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SA1 Introduction

This section introduces the notation and links it with the one used in the main text, sets up the statistical
framework, and enumerates the assumptions we rely on throughout this supplement.

SA1.1 Notation

In this Supplemental Appendix, we use n to denote sample size and h ≡ hn to denote a bandwidth sequence
where we omit the dependence on n to ease notation. Moreover, h denotes a generic bandwidth (e.g. h = h−
or h = h+ depending on the context).

Linear algebra. Throughout the text, eν denotes a conformable vector of zeros with a 1 in its (ν + 1)-th
element, which may take different dimensions in different places, 0k and ιk are the k-dimensional zero and one
vectors, respectively, Ik and 0k×j denote the k×k identity matrix and a k×j matrix of zeros, respectively, ⊗
indicates the Kronecker product, tr(·) is the trace operator, and diag(x) yields a square diagonal matrix with
the elements of x on its main diagonal. With a slight abuse of notation, we denote with vk = (vk1 , · · · , vkn)′
the element-wise power for vectors v ∈ Rn. The maximum and minimum of two real numbers a and b are
denoted by a∨b and a∧b, respectively. We let |·| denote the Euclidean norm, |A|2 =

∑
i

∑
j |aij |2 = tr(A′A).

Finally, for some q ∈ N, with Cq we denote the space of functions that are q-times continuously differentiable.

Asymptotic statements. For two positive sequences {an}n , {bn}n, we write an = O(bn) if ∃M ∈ R++ :
an ≤ Mbn for all large n, an = o(bn) if limn→∞ anb

−1
n = 0, and an ≲ bn if there exists a constant C such

that an ≤ Cbn for all large n. For two sequences of random variables {An}n , {Bn}n, we write An = oP(Bn)
if ∀ ϵ > 0, limn→∞ P[|AnB

−1
n | ≥ ε] = 0 and An = OP(Bn) if ∀ ε > 0,∃M,n0 ∈ R++ : P[|AnB

−1
n | > M ] < ε,

for n > n0. We denote convergence in probability with
P−→ and convergence in distribution with ⇝. We

denote (possibly multivariate) Gaussian random variable with N(a,B), where a denotes the mean and B the
variance-covariance.

Causal Model. We now describe the population causal model. The outcome variable is

Y = T · Y (1) + (1− T ) · Y (0),

with (Y (0), Y (1)) ∈ R2 denoting the potential outcomes and T := 1(X ≥ c) denoting treatment status.
We denote the vector of covariates with W ∈ Rd, d ∈ N. We stress that, as the notation suggests, W is
interpreted as a pretreatment vector of covariates.

In sharp RD designs, T = 1 (X ≥ c), where X ∈ R denotes the running variable and c ∈ R is the cutoff.
Throughout, FR(·) denotes the cumulative distribution function (cdf) of a random variable R and fR(·) is the
density of R with respect to the Lebesgue measure. We denote with f(·) the density of the running variable
X.

We further define

Y = [Y1, · · · , Yn]
′
, W = [W1,W2, · · · ,Wn]

′,

µW (x) = E[Wi|Xi = x], µWW (x) = E[WiW
′
i|Xi = x],

µWℓ
(x) = E[Wiℓ|Xi = x], µWℓWj

(x) = E[WiℓWij |Xi = x], ℓ, j ∈ {1, · · · , d},
µY−(x,w) = E[Yi(0) | Xi = x,Wi = w], µY+(x,w) = E[Yi(1) | Xi = x,Wi = w],

µ
(ν)
Y−(x,w) =

∂ν

∂xν
E[Yi(0) | Xi = x,Wi = w], µY+(x,w) =

∂ν

∂xν
E[Yi(1) | Xi = x,Wi = w],

σ2
Y−(x,w) = V[Yi(0) | Xi = x,Wi = w], σ2

Y+(x,w) = V[Yi(1) | Xi = x,Wi = w],

and σ2
W (x) = µWW (x)− µW (x)µW (x)′.
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Let rq(x) = (1, x, . . . , xq)′ be the polynomial basis of order q ∈ N and let

rp,s(u,w) = (rp(u)
′,w′ ⊗ rs(u)

′)′.

For a generic kernel function k(·) let

K(u) = 1(u < 0)k(−u) + 1(u ≥ 0)k(u)

and
Kh(u) = 1(u < 0)kh−(−u) + 1(u ≥ 0)kh+

(u), kh(u) = k(u/h)/h, h = (h−, h+)
′.

Finally, we also define the following matrices

Λ−,p,s := f(c)

0∫
−∞

K(u)rp(u)rs(u)
′ du, Λ+,p,s := f(c)

∞∫
0

K(u)rp(u)rs(u)
′ du,

and

Ξ−,p,s = f(c)

0∫
−∞

K2(u)rp (u) rs (u)
′
du, Ξ+,p,s = f(c)

∞∫
0

K2(u)rp (u) rs (u)
′
du.

SA1.2 Setup

Formally, the RD estimators with treatment interactions can be obtained from a “long” regression, i.e.,

ϑ̂p,s(h) := argmin
a−,a+∈R1+p,

ℓ−,ℓ+∈Rd(1+s)

n∑
i=1

Yi −

[
rp (Xi − c)

rp (Xi − c)

]′ [
a−
a+

]
−

[
(Wi ⊗ rs(Xi − c))

(Wi ⊗ rs(Xi − c))

]′ [
ℓ−

ℓ+

]2

Kh (Xi − c)

ϑ̂p,s(h) =

ϑ̂−,p,s(h−)

ϑ̂+,p,s(h+)

 =


α̂−,p(h−)

λ̂−,s(h−)

α̂+,p(h+)

λ̂+,s(h+)

 , p, s ∈ N .

In what follows, we define m := d(1 + s). The regression above has orthogonal regressors. Indeed, it has
a set of regressors that pertains to estimation to the left of the cutoff, i.e., (1(Xi < c)rp(Xi − c)′,1(Xi ≤
c)W′

i ⊗ rs(Xi − c)′)′, and a second set of regressors that refers to estimation to the right of the cutoff, i.e.,
(1(Xi ≥ c)rp(Xi − c)′,1(Xi ≥ c)W′

i ⊗ rs(Xi − c)′)′. Accordingly, by the partitioned regression theorem,
the least squares coefficients in the “long” regression are equivalent to the least squares coefficients in the
following “short” regressions:

ϑ̂−,p,s(h) =

[
α̂−,p(h)

λ̂−,s(h)

]
= argmin

a∈R1+p,
ℓ∈Rm

n∑
i=1

1 (Xi < c)
(
Yi − rp (Xi − c)

′
a− (Wi ⊗ rs(Xi − c))

′
ℓ
)2

Kh (Xi − c) ,

ϑ̂+,p,s(h) =

[
α̂+,p(h)

λ̂+,s(h)

]
= argmin

a∈R1+p,
ℓ∈Rm

n∑
i=1

1 (Xi ≥ c)
(
Yi − rp (Xi − c)

′
a− (Wi ⊗ rs(Xi − c))′ℓ

)2
Kh (Xi − c) ,

which can be equivalently written in matrix form as

ϑ̂−,p,s(h) = H−1
p,s(h)Γ̂

−1
−,p,s(h)Υ̂−,p,s(h), ϑ̂+,p,s(h) = H−1

p,s(h)Γ̂
−1
+,p,s(h)Υ̂+,p,s(h),
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where the hessian and score matrices are defined as

Γ̂−,p,s(h) = Rp,s(h)
′K−(h)Rp,s(h)/n, Υ̂−,p,s(h) = Rp,s(h)

′K−(h)Y/n,

Γ̂+,p,s(h) = Rp,s(h)
′K+(h)Rp,s(h)/n, Υ̂+,p,s(h) = Rp,s(h)

′K+(h)Y/n,

where

Rp(h) =



rp
(
X1−c

h

)′
rp
(
X2−c

h

)′
...

rp
(
Xn−c

h

)′


n×(1+p)

, Rp,s(h) =



rp
(
X1−c

h

)′
W′

1 ⊗ rs
(
X1−c

h

)′
rp
(
X2−c

h

)′
W′

2 ⊗ rs
(
X2−c

h

)′
...

...

rp
(
Xn−c

h

)′
W′

n ⊗ rs
(
Xn−c

h

)′


n×(1+p+m)

,

with the scaling and kernel matrices defined as

Hp,s(h) =

 Hp(h) 0(1+p)×m

0m×(1+p) Id ⊗Hs(h)


(1+p+m)×(1+p+m)

, Hq(h) = diag(hℓ : ℓ = 0, . . . , q),

K−(h) = diag (1(Xi < c)kh(Xi − c) : i = 1, . . . , n) , K+(h) = diag (1(Xi ≥ c)kh(Xi − c) : i = 1, . . . , n) .

In what follows, we mostly refer to the RD estimator to the right of the cutoff, ϑ̂+,p,s(h), but everything

follows symmetrically for the other RD estimator to the left of the cutoff, ϑ̂−,p,s(h).

We focus our attention on estimators of the following form:

χ̂ν,p,s(h) := ĕ′ν(ϑ̂+,p,s(h+)− ϑ̂−,p,s(h−)), ν ∈ {0, 1, . . . , p ∧ s},

where

ĕν :=

[
νIp+1eν

ν!ιd ⊗ Is+1eν

]
is the vector which extracts the (ν + 1)-th term in the polynomial basis in (Xi − c) and the (ν + 1)-th terms
in the interaction between such basis and Wi. The identity matrices are there just to stress the different
dimensions eν takes in different places.

Example 1. Suppose d = 1 and ν = 0, then

ĕ′νϑ̂+,p,s(h) = e′να̂+,p(h)︸ ︷︷ ︸
coefficient on (Xi−c)

+ e′νλ̂+,s(h)︸ ︷︷ ︸
coefficient on Wi·1(Xi≥c)

,

and
ĕ′νϑ̂−,p,s(h) = e′να̂−,p(h)︸ ︷︷ ︸

coefficient on 1(Xi<c)

+ e′νλ̂−,s(h)︸ ︷︷ ︸
coefficient on Wi·1(Xi<c)

.

If instead ν = 1, then

ĕ′νϑ̂+,p,s(h) = e′να̂+,p(h)︸ ︷︷ ︸
coefficient on (Xi−c)·1(Xi≥c)

+ e′νλ̂+,s(h)︸ ︷︷ ︸
coefficient on Wi·(Xi−c)·1(Xi≥c)

,
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and
ĕ′νϑ̂−,p,s(h) = e′να̂−,p(h)︸ ︷︷ ︸

coefficient on (Xi−c)·1(Xi<c)

+ e′νλ̂−,s(h)︸ ︷︷ ︸
coefficient on Wi·(Xi−c)·1(Xi<c)

.

♦

Moreover, let

ϑ⋆
−,p,s(h) := argmin

t∈R1+p+m

E
[
1(Xi < c)K

(
Xi − c

h

)
(Yi − rp,s(Xi − c,Wi)

′t)2
]
,

ϑ⋆
+,p,s(h) := argmin

t∈R1+p+m

E
[
1(Xi ≥ c)K

(
Xi − c

h

)
(Yi − rp,s(Xi − c,Wi)

′t)2
]
,

be the fixed-h best linear mean square error predictors of E[Yi(d) | Xi = c,Wi], d ∈ {0, 1}, i.e.,

ϑ⋆
−,p,s(h) = H−1

p,s(h)E

[
1(Xi < c)K

(
Xi − c

h

)
rp,s

(
Xi − c

h
,Wi

)
rp,s

(
Xi − c

h
,Wi

)′
]−1

×

E
[
1(Xi < c)K

(
Xi − c

h

)
rp,s

(
Xi − c

h
,Wi

)
µY−(Xi,Wi)

]
= H−1

p,s(h)E[Γ̂−,p,s(h)]
−1 E[Υ̂−,p,s(h)],

and

ϑ⋆
+,p,s(h) = H−1

p,s(h)E

[
1(Xi ≥ c)K

(
Xi − c

h

)
rp,s

(
Xi − c

h
,Wi

)
rp,s

(
Xi − c

h
,Wi

)′
]−1

×

E
[
1(Xi ≥ c)K

(
Xi − c

h

)
rp,s

(
Xi − c

h
,Wi

)
µY+(Xi,Wi)

]
= H−1

p,s(h)E[Γ̂+,p,s(h)]
−1 E[Υ̂+,p,s(h)].

SA1.3 Assumptions

In what follows, we state all the assumptions we rely on to prove the results in this supplemental appendix.
Assumption 1 in the main text contains Assumptions SA1, SA2, SA3, and SA5, whereas Assumption 2
coincides with SA4.

Assumption SA1 (Sampling). {(Yi, Xi,W
′
i)

′}ni=1 are independent draws from (Y,X,W′)′.

Assumption SA2 (Density of Running Variable). The Lebesgue density of Xi is continuous, bounded, and
bounded away from zero.

Assumption SA3 (DGP). For t ∈ {0, 1} and k ∈ R++, with −k < c < k and for all x ∈ [−k, k],w ∈ Rd :

(a) E[Wi | Xi = x] is continuous and E[WiW
′
i | Xi = x] is continuous and invertible.

(b) E[Yi(t) | Xi = x,Wi = w]is q-times continuously differentiable in x and continuous in w for q ≥ 1.

(c) V[Yi(t)|Xi = x] and V[Yi(t)|Xi = x,Wi = w] are continuous and bounded away from zero.

(d) E[|Yi(t)|4|Xi = x,Wi = w] is continuous in both arguments.

(e) E[|Wi|4|Xi = x] is continuous.

(f) E[Wi V[Yi(t)|Xi,Wi] | Xi = x] and E[WiW
′
i V[Yi(t)|Xi,Wi] | Xi = x] are continuous.

(g) Γ−,p,s and Γ+,p,s in Equation (3) are positive definite matrices.

6



Assumption SA4 (Identification). For k ∈ R, with −k < c < k and for all x ∈ [−k, k],w ∈ Rd the
expectation of Yi(t), t ∈ {0, 1} conditional on (Xi,Wi) is

µ−(x,w) = α−(x) + λ−(x)
′w, µ+(x,w) = α+(x) + λ+(x)

′w,

where λ−(x) := (λ−,1(x), · · · , λ−,d(x))
′,λ+(x) := (λ+,1(x), · · · , λ+,d(x))

′, and α−(x), α+(x) ∈ Cq, and
λ−,ℓ(x), λ+,ℓ(x),∈ Cq for all ℓ ∈ {1, · · · , d} for some q ∈ N.

Assumption SA5 (Kernel). The kernel function k(·) : [0, 1] → R is continuous and nonnegative.

In words, under Assumption SA1 the sample is composed of independent draws from an underlying population
of interest. Assumptions SA2, SA3a, SA3c, and SA3f are technical conditions on the data-generating process
(DGP) we rely on when we establish convergence rates and characterize the probability limits of interest.
Assumption SA3g is a standard assumption in least squares which requires the probability limit of the Gram
matrix to be positive definite. Assumption SA3a also establishes that W can be thought of as a vector of
pretreatment covariates. Assumption SA3b is necessary to Taylor expand the conditional expectation of the
potential outcomes and characterize the smoothing bias. Assumptions SA3d and SA3e are standard bounded
absolute higher-order moment conditions that make the Lyapunov condition satisfied and allow us to invoke a
Lindeberg-Feller central limit theorem to show asymptotic normality of the RD estimator. Assumption SA4
imposes a partially linear (in W) structure –locally at the cutoff– on the population conditional expectation
of the potential outcomes which we rely on when attaching a causal interpretation to the probability limit
of the RD estimator. Assumption SA5 states standard technical conditions on the kernel used in the local
polynomial regression.

SA1.4 Mapping between Main Text and Supplement

In the main text, we present all the results using the long regression with p = s = 1

Yi onto (rp(Xi − c)′, Tirp(Xi − c)′,W′
i ⊗ rs(Xi − c)′, TiW

′
i ⊗ rs(Xi − c)′)′, (1)

which aligns with the classical way of thinking about linear regressions. Indeed, this representation allows
us to readily interpret the coefficients on the terms interacted with Ti as specific differences between treated
and control groups.

In this supplement, we set up the problem as the long regression

Yi onto ((1− Ti)rp(Xi − c)′, Tirp(Xi − c)′, (1− Ti)W
′
i ⊗ rs(Xi − c)′, TiW

′
i ⊗ rs(Xi − c)′)′. (2)

This is equivalent to (1) in that the predicted values and the residuals of these two regressions are the same.
However, the regression coefficients in (2) have a different interpretation than those in (1). For example, the
coefficients on the terms interacted with Ti do not describe differences between treated and control groups
but rather capture only moments of the treated population. On the one hand, (1) allows coefficients to be
directly interpreted as long as differences between treated and control are of interest. On the other hand, as
we already stressed in Section SA1.2, (2) can be written as two separate “short” regressions with orthogonal
design matrices, making statements and proofs less cumbersome from a notational standpoint. For this
reason, we rely on (1) in the main text and on (2) in this supplement.

Table SA-1 maps the notation used in this supplement with the one used in the main paper. Dependence on
h is omitted to simplify notation. For the MSE constants, we will use the relationship

ς̂(h) = Mϑ̂1,1(h) = M

ϑ̂−,p,s(h−)

ϑ̂+,p,s(h+)

 , M :=


−e′0Ip+1 0′

m

0d×(p+1) −(ιd ⊗ Is+1e0)
′

e′0Ip+1 0′
m

0d×(p+1) (ιd ⊗ Is+1e0)
′

 .
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Table SA-1: Mapping between main text and supplement notation.

Main Supplement

Estimands
α(·) α−(·)
θ(·) α+(·)− α−(·)
λ(·) λ−(·)
ξ(·) λ+(·)− λ−(·)
ς (α+(0)− α−(0),λ+(0)

′ − λ−(0)
′)′

Estimators
α̂ e′0α̂−

θ̂ e′0(α̂+ − α̂−)

λ̂ (ιd ⊗ Is+1e0)
′λ̂−

ξ̂ (ιd ⊗ Is+1e0)
′(λ̂+ − λ̂−)

ς̂ ĕ′0(ϑ̂+,1,1 − ϑ̂−,1,1)
ω̂1 e′1α̂−
ω̂2 e′1(α̂+ − α̂−)

ω̂3 (ιd ⊗ Is+1e1)
′λ̂−

ω̂4 (ιd ⊗ Is+1e1)
′(λ̂+ − λ̂−)

Constants

Bs s′M(B
[0]
+,1,1 +B

[1]
+,1,1 −B

[0]
−,1,1 +B

[1]
−,1,1)

Vs s′M(Γ−1
+,1,1V+,1,1Γ

−1′
+,1,1 + Γ−1

−,1,1V−,1,1Γ
−1′
−,1,1)M

′s

We conclude this section by mapping the results in the main text with the proofs in the supplement:

• Theorem 1 is a particular case of the results proved in Section SA2.4 with p = s = 1 and ν = 0;

• Theorem 2 follows from the results in Section SA2.6 with p = s = 1, ν = 0, and ĕν = s;

• Theorem 3 is a particular case of Corollary SA-5 with p = s = 1 and ν = 0.

SA1.5 Auxiliary Lemmas and Quantities

In this subsection, we introduce a series of auxiliary lemmas and quantities we rely upon in the rest of the
supplemental appendix. We heavily rely on the next lemma for asymptotic statements.

Lemma SA-1. Let An be a sequence of random matrices with finite first two moments. Then

An = E[An] +OP(|V[An]|1/2).

[Proof]

The next lemma handles the Gram matrices

Λ̂−,p,s(h) = Rp(h)
′K−(h)Rs(h)/n, Λ̂+,p,s(h) = Rp(h)

′K+(h)Rs(h)/n,

and shows the object concentrates around in probability and the rate at which such concentration occurs.

Lemma SA-2. Let Assumptions SA1, SA2, and SA5 hold with k ≥ h. If nh → ∞ and h → 0, then

Λ̂−,p,s(h) = Λ̃−,p,s(h) +OP(1/
√
nh), Λ̂+,p,s(h) = Λ̃+,p,s(h) +OP(1/

√
nh),
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with

Λ̃−,p,s(h) := E[Λ̂−,p,s(h)] =

0∫
−∞

K(u)rp(u)rs(u)
′f(uh+ c) du,

Λ̃+,p,s(h) := E[Λ̂+,p,s(h)] =

∞∫
0

K(u)rp(u)rs(u)
′f(uh+ c) du.

[Proof]

In the next lemma, we give conditions for the asymptotic invertibility of Γ̂−,p,s(h) and Γ̂+,p,s(h), thereby
making local polynomial estimators well-defined in large samples.

Lemma SA-3. Let Assumptions SA1, SA2, SA3, and SA5 hold with k ≥ h. If nh → ∞ and h → 0, then

Γ̂−,p,s(h) = Γ̃−,p,s(h) +OP(1/
√
nh), Γ̂+,p,s(h) = Γ̃+,p,s(h) +OP(1/

√
nh),

where

Γ̃−,p,s(h) :=

Λ̃−,p,p(h) G̃−,2(h)

G̃−,2(h)
′ G̃−,3(h)

 , Γ̃+,p,s(h) :=

Λ̃+,p,p(h) G̃+,2(h)

G̃+,2(h)
′ G̃+,3(h)

 ,

where

G̃−,2(h) =

0∫
−∞

K (u)
[
µW (uh+ c)′ ⊗ rp (u) rs (u)

′]
f(uh+ c) du,

G̃+,2(h) =

∞∫
0

K(u)
[
µW (uh+ c)′ ⊗ rp (u) rs (u)

′]
f(uh+ c) du,

G̃−,3(h) =

0∫
−∞

K (u)
[
µWW (uh+ c)⊗ rs (u) rs (u)

′]
f(uh+ c) du,

G̃+,3(h) =

∞∫
0

K (u)
[
µWW (uh+ c)⊗ rs (u) rs (u)

′]
f(uh+ c) du.

Last,
Γ̃−,p,s(h) = Γ−,p,s{1 + o(1)}, Γ̃+,p,s(h) = Γ+,p,s{1 + o(1)},

where

Γ−,p,s =

[
Λ−,p,p G−,2

G′
−,2 G−,3

]
, Γ+,p,s =

[
Λ+,p,p G+,2

G′
+,2 G+,3

]
, (3)

with

Λ−,p,s = f(c)

0∫
−∞

K(u)rp(u)rs(u)
′ du, Λ+,p,s = f(c)

∞∫
0

K(u)rp(u)rs(u)
′ du

G−,2 = µ′
W ⊗Λ−,p,s, G+,2 = µ′

W ⊗Λ+,p,s,

G−,3 = µWW ⊗Λ−,s,s, G+,3 = µWW ⊗Λ+,s,s.
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[Proof]

To have a more compact notation, we introduce the following quantities for integers p, s, a ∈ N0:

ζ̂−,p,s,a(h) =
1

nh

n∑
i=1

1(Xi < c)K

(
Xi − c

h

)
rp,s

(
Xi − c

h
,Wi

)(
Xi − c

h

)a+1

,

ζ̂+,p,s,a(h) =
1

nh

n∑
i=1

1(Xi ≥ c)K

(
Xi − c

h

)
rp,s

(
Xi − c

h
,Wi

)(
Xi − c

h

)a+1

,

φ̂−,p,s,a(h) =
1

nh

n∑
i=1

1(Xi < c)K

(
Xi − c

h

)
rp,s

(
Xi − c

h
,Wi

)
W′

i

(
Xi − c

h

)a+1

,

φ̂+,p,s,a(h) =
1

nh

n∑
i=1

1(Xi ≥ c)K

(
Xi − c

h

)
rp,s

(
Xi − c

h
,Wi

)
W′

i

(
Xi − c

h

)a+1

.

The following two lemmas characterize the asymptotic properties of ζ̂−,p,s,a(h), ζ̂+,p,s,a(h), φ̂−,p,s,a(h), and
φ̂+,p,s,a(h). These results are used below to guarantee that the “constant terms” in the MSE expansions are
asymptotically well-defined.

Lemma SA-4. Let Assumptions SA1, SA2, SA3, and SA5 hold with k ≥ h. If nh → ∞ and h → 0, then

ζ̂−,p,s,a(h) = ζ̃−,p,s,a(h) +OP(1/
√
nh), ζ̂+,p,s,a(h) = ζ̃+,p,s,a(h) +OP(1/

√
nh),

φ̂−,p,s,a(h) = φ̃−,p,s,a(h) +OP(1/
√
nh), φ̂+,p,s,a(h) = φ̃+,p,s,a(h) +OP(1/

√
nh),

with

ζ̃−,p,s,a(h) := E[ζ̂−,p,s,a(h)] =

0∫
−∞

K(u)rp,s(u,µW (uh+ c))ua+1f(uh+ c) du,

ζ̃+,p,s,a(h) := E[ζ̂+,p,s,a(h)] =

∞∫
0

K(u)rp,s(u,µW (uh+ c))ua+1f(uh+ c) du,

φ̃−,p,s,a(h) := E[φ̂−,p,s,a(h)] =

0∫
−∞

K(u)

[
rp(u)µW (uh+ c)′

µWW (uh+ c)⊗ rs(u)

]
ua+1f(uh+ c) du,

φ̃+,p,s,a(h) := E[φ̂+,p,s,a(h)] =

∞∫
0

K(u)

[
rp(u)µW (uh+ c)′

µWW (uh+ c)⊗ rs(u)

]
ua+1f(uh+ c) du.

Last

ζ̃−,p,s,a(h) = ζ−,p,s,a{1 + o(1)}, ζ̃+,p,s,a(h) = ζ+,p,s,a{1 + o(1)},
φ̃−,p,s,a(h) = φ−,p,s,a{1 + o(1)}, φ̃+,p,s,a(h) = φ+,p,s,a{1 + o(1)},

where

ζ−,p,s,a = f(c)

0∫
−∞

K(u)rp,s(u,µW )ua+1 du, ζ+,p,s,a = f(c)

∞∫
0

K(u)rp,s(u,µW )ua+1 du,

φ−,p,s,a = f(c)

0∫
−∞

K(u)

[
rp(u)µ

′
W

µWW ⊗ rs(u)

]
ua+1 du, φ+,p,s,a = f(c)

∞∫
0

K(u)

[
rp(u)µ

′
W

µWW ⊗ rs(u)

]
ua+1 du.
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[Proof]

SA2 Main Results

In this section, we mostly focus on the RD estimator to the right of the cutoff as everything holds symmet-
rically for the RD estimator to the left. All the lemmas and main results are reported for both estimators.

The RD estimator with interacted covariates to the right of the cutoff is defined as

ϑ̂+,p,s(h) := argmin
t∈R1+p+m

n∑
i=1

1(Xi ≥ c)K

(
Xi − c

h

)
(Yi − rp,s(Xi − c,Wi)

′t)2.

To analyze the statistical properties of the RD estimator with interacted covariates ϑ̂+,p,s(h), we take ad-
vantage of the following decomposition:

ϑ̂+,p,s(h) = H−1
p,s(h)Γ̂

−1
+,p,s(h)

1

nh

n∑
i=1

1(Xi ≥ c)K

(
Xi − c

h

)
rp,s

(
Xi − c

h
,Wi

)
Yi,

= ϑ⋆
+,p,s(h) +H−1

p,s(h)Γ̂
−1
+,p,s(h)

1

nh

n∑
i=1

1(Xi ≥ c)K

(
Xi − c

h

)
rp,s

(
Xi − c

h
,Wi

)
u+,i(h),

where ϑ⋆
+,p,s(h) the fixed-h best linear mean square error predictor of E[Yi(1) | Xi = c,Wi] and

u+,i(h) := Yi − rp,s (Xi − c,Wi)
′
ϑ⋆
+,p,s(h)

is the fixed-h ℓ2-projection residual. This decomposition gives us

ϑ̂+,p,s(h)− ϑ⋆
+,p,s(h) = H−1

p,s(h)Γ̂
−1
+,p,s(h)L+,p,s(h),

where

L+,p,s(h) =
1

nh

n∑
i=1

1(Xi ≥ c)K

(
Xi − c

h

)
rp,s

(
Xi − c

h
,Wi

)
u+,i(h).

SA2.1 Asymptotic Approximation and Asymptotic Variance

Lemma SA-3 shows that Γ̂+,p,s(h) is asymptotically invertible. This Lemma takes care of the “denominator”
of the RD estimator by showing that

Γ̂+,p,s(h) = Γ+,p,s + o(1) +OP(1/
√
nh).

Coming to the L+,p,s(h) term, first note that E[L+,p,s(h)] = 0 because of the properties of ℓ2-projection

residuals. Regarding the variance of this term, the next lemma shows that V[L+,p,s(h)] is O(1/
√
nh). Then,

it follows that L+,p,s(h) = OP(1/
√
nh) by Lemma SA-1.

Lemma SA-5. Let Assumptions SA1, SA2, SA3, and SA5 hold with k ≥ h. Then, for fixed h > 0

V[L−,p,s(h)] =
1

nh
V−,p,s(h), V[L+,p,s(h)] =

1

nh
V+,p,s(h).

Furthermore, as nh → ∞ and h → 0

V−,p,s(h) = V−,p,s{1 + o(1)}, V+,p,s(h) = V+,p,s{1 + o(1)},
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where |V−,p,s| < ∞ and |V+,p,s| < ∞.

[Proof]

Typically, we are interested in estimators of the form ĕ′νϑ̂+,p,s(h+). By Lemma SA-3 and Lemma SA-5 and
Slutsky’s theorem, we know that

√
nh2ν+1ĕ′ν(ϑ̂+,p,s(h)− ϑ⋆

+,p,s(h)) =
√
nhĕ′νΓ̂

−1
+,p,s(h)L+,p,s(h) = OP(1).

The next theorem shows that the term above is not only bounded in probability but also converging in
distribution to a Normal random variable.

Theorem SA-1. Let Assumptions SA1, SA2, SA3, and SA5 hold with k ≥ h. If nh → ∞ and h → 0, then

√
nhHp,s(h)(ϑ̂−,p,s(h)− ϑ⋆

−,p,s(h))⇝ N(01+p+d,Ω−,p,s),
√
nhHp,s(h)(ϑ̂+,p,s(h)− ϑ⋆

+,p,s(h))⇝ N(01+p+d,Ω+,p,s),

with

Ω−,p,s = Γ−1
−,p,sV−,p,sΓ

−1′
−,p,s, Ω+,p,s = Γ−1

+,p,sV+,p,sΓ
−1′
+,p,s,

where Ω−,p,s and Ω+,p,s are positive definite matrices.

[Proof]

Corollary SA-2. Let the conditions in Theorem SA-1 hold, then for ν ∈ {0, · · · , p ∧ s}:
√
nh2ν+1ĕ′ν(ϑ̂−,p,s(h)− ϑ⋆

−,p,s(h))⇝ N(0,V−,ν,p,s),
√
nh2ν+1ĕ′ν(ϑ̂+,p,s(h)− ϑ⋆

+,p,s(h))⇝ N(0,V+,ν,p,s),

where
V−,ν,p,s := ĕ′νΩ−,p,sĕν , V+,ν,p,s := ĕ′νΩ+,p,sĕν .

SA2.2 Variance Estimation

To estimate the asymptotic variance of the RD estimator, we propose the following plug-in estimator

V̂+,ν,p,s(h) = ĕ′νΓ̂
−1
+,p,s(h)V̂+,p,s(h)Γ̂

−1
+,p,s(h)

′
ĕν ,

where

V̂+,p,s(h) :=
1

nh

n∑
i=1

√
w+,i(h) · 1(Xi ≥ c)K

(
Xi − c

h

)
rp,s

(
Xi − c

h
,Wi

)
rp,s

(
Xi − c

h
,Wi

)′

û2
+,i(h),

with û+,i(h) := Yi − rp,s(Xi − c,Wi)
′ϑ̂+,p,s(h).

The weights w+,i(h) allow for different HC-type estimators. Namely,

HC0 HC1 HC2 HC3

w−,i(h) 1 N−
N−−2 tr(Q−,p,s)+tr(Q−,p,sQ−,p,s)

1
1−L+,i

1
(1−L+,i)

2

w+,i(h) 1 N+

N+−2 tr(Q+,p,s)+tr(Q+,p,sQ+,p,s)
1

1−L+,i

1
(1−L+,i)

2
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where

N− :=

n∑
i=1

1 (Xi < c) and N+ :=

n∑
i=1

1 (Xi ≥ c) ,

Q−,p,s, and Q+,p,s are the “projection” matrices used to get the estimated residuals and are defined as,

Q−,p,s := Rp,s(h)Γ̂
−1
−,p,sRp,s(h)

′K−(h)/n, Q+,p,s = Rp,s(h)Γ̂
−1
+,p,sRp,s(h)

′K+(h)/n,

and
L−,i := e′iQ−,p,sei, L+,i := e′iQ+,p,sei,

which denote the leverage of each observation.

Theorem SA-3. Let the assumptions of Theorem SA-1 hold, then

V̂−,ν,p,s(h)
P−→ V−,ν,p,s, V̂+,ν,p,s(h)

P−→ V+,ν,p,s.

[Proof]

Define the standard error of the RD estimators as

σ̂−,ν,p,s(h) :=

(
1

nh2ν+1
V̂−,ν,p,s(h)

)1/2

, σ̂+,ν,p,s(h) :=

(
1

nh2ν+1
V̂+,ν,p,s(h)

)1/2

.

The lemma above naturally yields the following corollary via Slutsky’s theorem.

Corollary SA-4. Let Assumptions SA1, SA2, SA3, and SA5 hold with k ≥ h. If nh2ν+1 → ∞ and h → 0
then for ν ∈ {0, 1, . . . , p ∧ s}

σ̂−1
−,ν,p,s(h)ĕ

′
ν(ϑ̂−,p,s(h)− ϑ⋆

−,p,s(h))⇝ N(0, 1),

σ̂−1
+,ν,p,s(h)ĕ

′
ν(ϑ̂+,p,s(h)− ϑ⋆

+,p,s(h))⇝ N(0, 1).

Clustered Data

In the case of clustered data, the extension of the above results is immediate. The only difference would
be reflected in the form of the “meat” matrices V−,ν,p,s, and V+,ν,p,s, which will ultimately depend on the
particular form of clustering being used. For a review on cluster-robust inference, see Cameron and Miller
(2015) and MacKinnon et al. (2023).

We assume that each unit i ∈ {1, 2, · · · , n} belongs to a single cluster s(i) ∈ {1, 2, · · · , G}, where s :
{1, 2, · · · , n} → {1, 2, · · · , G}. Furthermore, we consider an asymptotic regime where the number of clusters
G grows large, G → ∞, and dominates the bandwidth Gh → ∞.

To estimate the asymptotic variance of the RD estimator under clustering, we propose the following plug-in
estimator

V̂CL
+,ν,p,s(h) =

(G− 1)n

(G− 1)(n− p− 1− d)
ĕ′νΓ̂

−1
+,p,s(h)V̂

CL
+,p,s(h)Γ̂

−1
+,p,s(h)

′
ĕν ,

where

V̂CL
+,p,s(h) :=

1

Gh

G∑
g=1

n∑
i,j=1

1(s(i) = s(j)) · 1(Xi ≥ c,Xj ≥ c)×

K

(
Xi − c

h

)
K

(
Xj − c

h

)
rp,s

(
Xi − c

h
,Wi

)
rp,s

(
Xj − c

h
,Wj

)′

û+,i(h)û+,j(h).
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This estimator, as well as many more, is implemented in our R and Stata software.

SA2.3 Smoothing Bias and Probability Limit

Without further assumptions on the data generating process or on µY−(Xi,Wi) and µY+(Xi,Wi), the
probability limit of the RD estimator has a generic best linear mean squared error predictor interpretation.
We need to leverage extra structure to attach more interpretation to this probability limit. In this spirit, we
posit Assumption SA4, which we state again here below for the reader’s convenience.

Assumption SA4. The expectation of Yi(t), t ∈ {0, 1} conditional on (Xi,Wi) is

µ−(Xi,Wi) = α−(Xi) + λ−(Xi)
′Wi, µ+(Xi,Wi) = α+(Xi) + λ+(Xi)

′Wi,

where λ−(x) := (λ−,1(x), · · · , λ−,d(x))
′,λ+(x) := (λ+,1(x), · · · , λ+,d(x))

′, and α−(x), α+(x) ∈ Cq+2, and
λ−,ℓ(x), λ+,ℓ(x),∈ Cq+2 for all ℓ ∈ {1, · · · , d} for some q ∈ N.

Let

ϑ−,p,s :=

[
α−,p(c)

λ−,s(c)

]
, ϑ+,p,s :=

[
α+,p(c)

λ+,s(c)

]
, (4)

where

α−,p(x) =



α−(x)

α
(1)
− (x)

...

α
(p)
− (x)

p!


, λ−,s(x) =



λ−,1(x)

...

λ
(s)
−,1(x)

s!

...

λ−,d(x)

...

λ
(s)
−,d(x)

s!



, α+,p(x) =



α+(x)

α
(1)
+ (x)

...

α
(p)
+ (x)

p!


, λ+,s(x) =



λ+,1(x)

...

λ
(s)
+,1(x)

s!

...

λ+,d(x)

...

λ
(s)
+,d(x)

s!



,

with α−,p ≡ α−,p(c),λ−,s ≡ λ−,s(c),α+,p ≡ α+,p(c), and λ+,s ≡ λ+,s(c).

Remark SA-1. Note that Assumption SA4 is without loss of generality whenever Wi is a vector of binary
covariates. However, when d > 1 some extra care is needed in constructing Wi. Indeed, suppose that we
have two binary covariates Vi and Ui, then d = 3 and Wi = (Vi, Ui, Vi · Ui)

′. ♣

Consider the following decomposition

Hp,s(h)(ϑ̂+,p,s(h)− ϑ+,p,s) = Hp,s(h)(ϑ̂+,p,s(h)− ϑ⋆
+,p,s(h)) +Hp,s(h)(ϑ

⋆
+,p,s(h)− ϑ+,p,s).

From Theorem SA-1, we know that Hp,s(h)(ϑ̂+,p,s(h)− ϑ⋆
+,p,s(h)) = OP(1/

√
nh). In what follows, we show

that the second term is of orderOP(h
1+p∧s). Throughout, we consider an asymptotic regime in which this term

is negligible with respect to the first term. It is precisely in this spirit that we will refer to ϑ⋆
+,p,s(h)−ϑ+,p,s

as a “bias” term. The next lemma shows that the leading term of the bias is of order O(h1+p∧s).

Lemma SA-6 (Smoothing Bias). Let Assumptions SA1-SA5 hold for some q ≥ 2+ p∨ s and with k ≥ h. If
nh → 0 and h → 0, then

ϑ⋆
−,p,s(h)− ϑ−,p,s =

H−1
p,s(h)

(
h1+pB̃

[0]
−,p(h) + h2+pB̃

[0]
−,p+1(h) + h1+sB̃

[1]
−,s(h) + h2+sB̃

[1]
−,s+1(h) + o(h2+p∧s)

)
,

14



ϑ⋆
+,p,s(h)− ϑ+,p,s =

H−1
p,s(h)

(
h1+pB̃

[0]
+,p(h) + h2+pB̃

[0]
+,p+1(h) + h1+sB̃

[1]
+,s(h) + h2+sB̃

[1]
+,s+1(h) + o(h2+p∧s)

)
,

where

B̃
[0]
−,a(h) = Γ̃−1

−,p,s(h)ζ̃−,p,s,a(h)
α
(a+1)
− (c)

(a+ 1)!
→ Γ−1

−,p,sζ−,p,s,a
α
(a+1)
+ (c)

(a+ 1)!
=: B

[0]
−,a,

B̃
[0]
+,a(h) = Γ̃−1

+,p,s(h)ζ̃+,p,s,a(h)
α
(a+1)
+ (c)

(a+ 1)!
→ Γ−1

+,p,sζ+,p,s,a
α
(a+1)
+ (c)

(a+ 1)!
=: B

[0]
+,a,

B̃
[1]
−,a(h) = Γ̃−1

−,p,s(h)φ̃−,p,s,a(h)
λ
(a+1)
− (c)

(a+ 1)!
→ Γ−1

−,p,sφ−,p,s,a
λ
(a+1)
− (c)

(a+ 1)!
=: B

[1]
−,a,

B̃
[1]
+,a(h) = Γ̃−1

+,p,s(h)φ̃+,p,s,a(h)
λ
(a+1)
+ (c)

(a+ 1)!
→ Γ−1

+,p,sφ+,p,s,a
λ
(a+1)
+ (c)

(a+ 1)!
=: B

[1]
+,a.

[Proof]

The following corollary follows naturally from Theorem SA-1 and Lemma SA-6.

Corollary SA-5. Let the assumptions of Lemma SA-6 hold. If nh2ν+1 → ∞, h → 0, and nh2(p∧s)+3 → 0,
then

√
nh2ν+1ĕ′ν(ϑ̂−,p,s(h)− ϑ−,p,s)⇝ N(0,V−,ν,p,s),

√
nh2ν+1ĕ′ν(ϑ̂+,p,s(h)− ϑ+,p,s)⇝ N(0,V+,ν,p,s),

where
V−,ν,p,s := ĕ′νΩ−,p,sĕν , V+,ν,p,s := ĕ′νΩ+,p,sĕν ,

with

Ω−,p,s = Γ−1
−,p,sV−,p,sΓ

−1′
−,p,s, Ω+,p,s = Γ−1

+,p,sV+,p,sΓ
−1′
+,p,s,

and where

V−,p,s = f(c)

0∫
−∞

K2(u)

 rp (u) rp (u)
′ E[σ2

Y −(Xi,Wi) | Xi = c] E[W′
iσ

2
Y −(Xi,Wi) | Xi = c]⊗ rp (u) rs (u)

′

E[Wiσ
2
Y −(Xi,Wi) | Xi = c]⊗ rs (u) rp (u)

′ E[WiW
′
iσ

2
Y −(Xi,Wi) | Xi = c]⊗ rs (u) rs (u)

′

 du,

V+,p,s = f(c)

∞∫
0

K2(u)

 rp (u) rp (u)
′ E[σ2

Y +(Xi,Wi) | Xi = c] E[W′
iσ

2
Y +(Xi,Wi) | Xi = c]⊗ rp (u) rs (u)

′

E[Wiσ
2
Y +(Xi,Wi) | Xi = c]⊗ rs (u) rp (u)

′ E[WiW
′
iσ

2
Y +(Xi,Wi) | Xi = c]⊗ rs (u) rs (u)

′

 du

are positive-definite matrices.

SA2.4 Consistency

Using Lemma SA-5 and Lemma SA-6, we have

Hp,s(h)
(
ϑ̂−,p,s(h)− ϑ−,p,s

)
= OP

(
1√
nh

+ h1+p∧s

)
,

Hp,s(h)
(
ϑ̂+,p,s(h)− ϑ+,p,s

)
= OP

(
1√
nh

+ h1+p∧s

)
,

thus if nh → ∞ and h → 0, then ϑ̂−,p,s(h)
P−→ ϑ−,p,s and ϑ̂+,p,s(h)

P−→ ϑ+,p,s.
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Typically, we are interested in estimators of the form ĕ′νϑ̂−,p,s(h) or ĕ
′
νϑ̂+,p,s(h). In this case, we get

ĕ′ν

(
ϑ̂−,p,s(h)− ϑ−,p,s

)
= OP

(
1√

nh2ν+1
+ h1+p∧s−ν

)
,

ĕ′ν

(
ϑ̂+,p,s(h)− ϑ+,p,s

)
= OP

(
1√

nh2ν+1
+ h1+p∧s−ν

)
.

In an asymptotic regime where also nmin{h−, h+}2ν+1 → ∞ and h → 0, then ĕ′νϑ̂−,p,s(h)
P−→ ĕ′νϑ−,p,s and

ĕ′νϑ̂+,p,s(h)
P−→ ĕ′νϑ+,p,s.

Define
χ̂ν,p,s(h) := ĕ′ν

(
ϑ̂+,p,s(h+)− ϑ̂−,p,s(h−)

)
, χν,p,s := ĕ′ν (ϑ+,p,s − ϑ−,p,s) .

Then

χ̂ν,p,s(h)− χν,p,s = OP

(
1√

nmin{h−, h+}2ν+1
+max{h−, h+}1+p∧s−ν

)
,

and χ̂ν,p,s(h)
P−→ χν,p,s.

SA2.5 Causal Interpretation of the Probability Limit

Before delving into this section, we redefine the “extractor” vector as

ĕνx,νw
=

[
νxIp+1eνx

νw!ιd ⊗ Is+1eνw

]

to be the vector extracting the (νx+1)-th term in the polynomial basis in (Xi− c) and the (νw +1)-th terms
in the interaction between such basis and Wi. Furthermore, we define ĕνx,· ≡ I1+p+deνx , to be the vector
that extracts only the (νx + 1)-th term in the polynomial basis in (Xi − c). We also define accordingly

χνx,νw,p,s := ĕ′νx,νw
(ϑ+,p,s − ϑ−,p,s) .

The quantity χνx,νw,p,s has a natural causal interpretation in many cases, which depends on the elements
extracted:

1. When d = 1 and Wi is binary, we have that

χνx,·,p,s =
∂νx

∂xνx
E[Yi(1)− Yi(0) | Xi = x,Wi = 0]

∣∣∣
x=c

,

and

χν,ν,p,s =
∂ν

∂xν
(E[Yi(1)− Yi(0) | Xi = x,Wi = 1]− E[Yi(1)− Yi(0) | Xi = x,Wi = 0])

∣∣∣
x=c

.

In other words, if a researcher is interested in the conditional average treatment effect (CATE) for the

two sub-populations defined by Wi ∈ {0, 1}, then the first element of ϑ̂+,p,s(h+)− ϑ̂−,p,s(h−) identifies
the CATE for the baseline (Wi = 0) group, whereas the (2 + p)-th element identifies the difference in
CATEs between in the sub-population with Wi = 1 and the baseline one.

2. When there is more than one binary covariate, say Ui and Vi, then Wi = (Ui, Vi, Ui · Vi)
′ to correctly

identify the CATEs in all the sub-populations.

3. If d = 1 and the covariate of interest Wi is categorical (e.g., race) or multi-valued discrete (e.g., age)
–i.e., takes on J distinct values (1, . . . , J)– then the same interpretation offered above holds as long as
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the covariate is dummied out. In other words, it means that

Wi = (I2, I3, . . . , IJ)
′, Ij := 1(Wi = j), j = 2, . . . , J.

4. If d = 1 and Wi is a continuous covariate (e.g., parental income), then we still have

χνx,·,p,s =
∂νx

∂xνx
E[Yi(1)− Yi(0) | Xi = x,Wi = 0]

∣∣∣
x=c

,

but the interpretation of the coefficients on the interaction terms between (Xi − c) and Wi changes as
follows

χν,p,s =
∂νx

∂xνx

∂νw

∂wνw
E[Yi(1)− Yi(0) | Xi = x,Wi = w]

∣∣∣
x=c

,

where the evaluation point of the derivative in the W -dimension needs not to be specified as this
derivative is constant in the W -dimension by Assumption SA4. The coefficient on the interaction terms
simply captures the change in the CATEs due to a marginal change in Wi. This change is assumed to
be linear in virtue of Assumption SA4.

SA2.6 MSE Expansions

We now provide first-order expansions for the MSE of the RD estimator. This is crucial to obtain formulas
for MSE-optimal bandwidths. We first start by giving a Nagar expansion of the unconditional MSE. Then,
we provide an approximation for the bias and the variance of the RD estimator, where the approximation
comes from disregarding higher-order terms.

First of all, recall that the RD estimator and the best linear mean square error predictor are

ϑ̂+,p,s(h) = H−1
p,s(h)Γ̂

−1
+,p,s(h)Υ̂+,p,s(h), ϑ⋆

+,p,s(h) = H−1
p,s(h)Γ̃

−1
+,p,s(h)Υ̃+,p,s(h).

Consider the following decomposition

ĕ′νϑ̂+,p,s(h)− µ
(ν)
+ (c,Wi)

= h−ν ĕ′νΓ̂
−1
+,p,s(h)

(
Υ̂+,p,s(h)− Γ̂+,p,s(h)Hp,s(h)ϑ

⋆
+,p,s(h)

)
+ ĕ′νϑ

⋆
+,p,s(h)− µ

(ν)
+ (c,Wi)

= h−ν ĕ′νΓ̃
−1
+,p,s(h)L+,p,s(h)︸ ︷︷ ︸
L+,ν,p,s(h)

+h−ν ĕ′ν

(
Γ̂−1
+,p,s(h)− Γ̃−1

+,p,s(h)
)
L+,p,s(h)︸ ︷︷ ︸

Q+,ν,p,s(h)

+ ĕ′νϑ
⋆
+,p,s(h)− µ

(ν)
+ (c,Wi)︸ ︷︷ ︸

B+,ν,p,s(h)

,

where we refer to L+,ν,p,s(h) as the “linear” term, to Q+,ν,p,s(h) as the “quadratic” term, and to B+,ν,p,s(h)

as the “bias” term. By Theorem SA-1 and Lemma SA-3, we know that L+,ν,p,s(h) = OP(1/
√
nh2ν+1)

and Q+,ν,p,s(h) = OP(1/
√
n2h2ν+2) = oP(L+,ν,p,s(h)). Moreover, under Assumption SA4, we have that

µ
(ν)
+ (c,Wi) = ĕ′ϑ+,p,s(h), thus by Lemma SA-6 we have that B+,ν,p,s(h) = O(h1+p∧s−ν). In an asymptotic

regime in which nh2+p∧s → ∞, we have that Q+,ν,p,s(h) = oP(B+,ν,p,s(h)). Therefore, under Assumptions
SA1-SA4, as n → ∞ and nh2+p∧s → ∞ we have

ĕ′ν(ϑ̂+,p,s(h)− ϑ+,p,s(h)) = L+,ν,p,s(h) + B+,ν,p,s(h) + oP(min{L+,ν,p,s(h),B+,ν,p,s(h)}).

With this result at hand, we define the first-order approximation of the mean squared error as

MSE[ĕ′ν(ϑ̂+,p,s(h)− ϑ+,p,s)] = E
[
(L+,ν,p,s(h) + B+,ν,p,s(h))

2
]
= V[L+,ν,p,s(h)] + B+,ν,p,s(h)

2,

where the second equality follows from the fact that B+,ν,p,s(h) is non-random and L+,ν,p,s(h) is uncondi-
tionally mean-zero. Similarly, we define

MSE[ĕ′ν(ϑ̂−,p,s(h)− ϑ−,p,s)] = V[L−,ν,p,s(h)] + B−,ν,p,s(h)
2
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for the left side of the cutoff, whereas for the difference, we define

MSE[ĕ′ν(ϑ̂+,p,s(h)− ϑ̂−,p,s(h)− (ϑ+,p,s(h)− ϑ−,p,s))]

= V[L+,ν,p,s(h)] + V[L−,ν,p,s(h)] + (B+,ν,p,s(h)− B−,ν,p,s(h))
2.

Under Assumptions SA1-SA5 and relying on Lemma SA-6, the bias approximations for the RD estimators
are given by

B−,ν,p,s(h) = h1+p−νB[0]
−,ν,p,s(h) + h1+s−νB[1]

−,ν,p,s(h) + o(h1+(p∧s)−ν),

B+,ν,p,s(h) = h1+p−νB[0]
+,ν,p,s(h) + h1+s−νB[1]

+,ν,p,s(h) + o(h1+(p∧s)−ν),

where

B[0]
−,ν,p,s(h) = ĕ′νB

[0]
−,p,s(h) → ĕ′νB

[0]
−,p,s =: B[0]

−,ν,p,s, B[1]
−,ν,p,s(h) = ĕ′νB

[1]
−,p,s(h)→ ĕ′νB

[1]
−,p,s(h) =: B[1]

−,ν,p,s,

B[0]
+,ν,p,s(h) = ĕ′νB

[0]
+,p,s(h) → ĕ′νB

[0]
−,p,s =: B[0]

+,ν,p,s, B[1]
+,ν,p,s(h) = ĕ′νB

[1]
+,p,s(h)→ ĕ′νB

[1]
+,p,s(h) =: B[1]

+,ν,p,s.

Furthermore, we define

B−,ν,p,s(h) := 1(p ≤ s)B[0]
−,ν,p,s(h) + 1(p ≥ s)B[1]

−,ν,p,s(h), B−,ν,p,s := 1(p ≤ s)B[0]
−,ν,p,s + 1(p ≥ s)B[1]

−,ν,p,s,

B+,ν,p,s(h) := 1(p ≤ s)B[0]
+,ν,p,s(h) + 1(p ≥ s)B[1]

+,ν,p,s(h), B+,ν,p,s := 1(p ≤ s)B[0]
+,ν,p,s + 1(p ≥ s)B[1]

+,ν,p,s.

Under Assumptions SA1-SA5 and relying on Corollary SA-5

V[L−,ν,p,s(h)] =
1

nh2ν+1
V−,ν,p,s(h), V−,ν,p,s(h) := ĕ′νΓ̃

−1
−,p,s(h)V−,p,s(h)Γ̃

−1′
−,p,s(h)ĕν ,

V[L+,ν,p,s(h)] =
1

nh2ν+1
V+,ν,p,s(h), V+,ν,p,s(h) := ĕ′νΓ̃

−1
+,p,s(h)V+,p,s(h)Γ̃

−1′
+,p,s(h)ĕν .

The variance approximations for the RD estimators are given by

V−,ν,p,s(h) → V−,ν,p,s := ĕ′νΓ
−1
−,p,sV−,p,sΓ

−1′
−,p,sĕν , V+,ν,p,s(h) → V+,ν,p,s := ĕ′νΓ

−1
+,p,sV+,p,sΓ

−1′
+,p,sĕν .

With these approximations, the MSE expansions of the RD estimators are given by

MSE[ĕ′ν(ϑ̂−,p,s(h)− ϑ−,p,s)] =
1

nh2ν+1
V−,ν,p,s + h2(1+p∧s−ν)B2

−,ν,p,s,

MSE[ĕ′ν(ϑ̂+,p,s(h)− ϑ+,p,s)] =
1

nh2ν+1
V+,ν,p,s + h2(1+p∧s−ν)B2

+,ν,p,s.

Accordingly, we define an MSE-optimal bandwidth as the minimizer of the Nagar expansion of the uncondi-
tional MSE.

One-sided Optimal Bandwidths. The MSE-optimal bandwidths are defined as

h⋆
−,ν,p,s := argmin

h>0

[
1

nh2ν+1
V−,ν,p,s + h2((p∧s)+1−ν)B2

−,ν,p,s

]
,

h⋆
+,ν,p,s := argmin

h>0

[
1

nh2ν+1
V+,ν,p,s + h2((p∧s)+1−ν)B2

+,ν,p,s

]
,

so, under the additional assumption that B−,ν,p,s ̸= 0 ̸= B+,ν,p,s, we get

h⋆
−,ν,p,s =

[
1 + 2ν

2(1 + (p ∧ s)− ν)n

V−,ν,p,s

B2
−,ν,p,s

] 1
3+2(p∧s)

, h⋆
+,ν,p,s =

[
1 + 2ν

2(1 + (p ∧ s)− ν)n

V+,ν,p,s

B2
+,ν,p,s

] 1
3+2(p∧s)

.
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Two-sided Optimal Bandwidth. In this case a single bandwidth is chosen, so h = h+ = h− and the
optimal bandwidth is defined as

h⋆
ν,p,s := argmin

h>0

[
1

nh2ν+1
(V+,ν,p,s + V−,ν,p,s) + h2((p∧s)+1−ν)(B+,ν,p,s − B−,ν,p,s)

2

]
,

so, under the additional assumption that B+,ν,p,s − B−,ν,p,s ̸= 0, we get

h⋆
ν,p,s =

[
1 + 2ν

2(1 + (p ∧ s)− ν)n

V+,ν,p,s + V−,ν,p,s

(B+,ν,p,s − B−,ν,p,s)2

] 1
3+2(p∧s)

.

SA3 Empirical Practice Investigating Covariate-Heterogeneity

To examine common empirical practices regarding heterogeneous effects, we sampled papers from AEA
journals over the past decade. The papers are listed in Table SA-2 below, along with a summarization of how
treatment effect heterogeneity was studied in each, including the empirical setting, the type of heterogeneity,
and details on how estimation and inference were conducted. For full details of each study, please refer to
the original work.
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SA4 Proofs

SA4.1 Proof of Lemma SA-1

Proof. Here, for simplicity, we just prove the lemma for the scalar case. By Markov inequality, we have

∀M > 0, P(|An − E[An]| ≥ M) ≤ E[|An − E[An]|]
M

≤ V[An]
1/2

M
,

which implies that V[An]
−1/2(An − E[An]) = OP(1) which was to be shown. The matrix case follows using

P(An ⪯ I) ≤ tr(E[An]), where An ⪯ I means that An − I is negative semi-definite. ■

SA4.2 Proof of Lemma SA-2

Proof. The proof covers the case to the right of the cutoff. Everything follows symmetrically for the other
case. First, for any p, s ∈ N

E[Λ̂+,p,s(h)] = E

[
1

n

n∑
i=1

1(Xi ≥ c)rp

(
Xi − c

h

)
rs

(
Xi − c

h

)′

K

(
Xi − c

h

)
1

h

]
(definition)

=
1

h
E

[
1(Xi ≥ c)rp

(
Xi − c

h

)
rs

(
Xi − c

h

)′

K

(
Xi − c

h

)]
(Assumption SA1)

=
1

h

∞∫
c

rp

(
x− c

h

)
rs

(
x− c

h

)′

K

(
x− c

h

)
f(x) dx

=

∞∫
0

rp(u)rs(u)
′K(u)f(hu+ c) du =: Γ̃+,p,s(h). (u = (x− c)/h)

By Lemma SA-1
Λ̂+,p,s(h) = E[Λ̂+,p,s(h)] +OP(|V[Λ̂+,p,s(h)]|).

The generic element of Λ̂+,p,s(h) is

1

nh

n∑
i=1

1(Xi ≥ c)

(
Xi − c

h

)j

K

(
Xi − c

h

)
, j ∈ {0, · · · , p+ s}.

Fix j ∈ {0, · · · , p+ s}, then

V

[
1

nh

n∑
i=1

1(Xi ≥ c)

(
Xi − c

h

)j

K

(
Xi − c

h

)]

=
1

nh2
V

[
1(Xi ≥ c)

(
Xi − c

h

)j

K

(
Xi − c

h

)]
(Assumption SA1)

≤ 1

nh2
E

[
1(Xi ≥ c)

(
Xi − c

h

)2j

K

(
Xi − c

h

)2
]

=
1

nh

∞∫
0

u2jK(u)2f(uh+ c) du = O(n−1h−1), (u = (x− c)/h)

where the last equality follows because u2jK(u)2f(uh+ c) is integrable due to Assumptions SA2, SA5, and
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k ≥ h. Hence |V[Λ̂+,p,s(h)]| = O(n−1h−1). Finally, we have Λ̂+,p,s(h) = E[Λ̂+,p,s(h)] + OP(1/
√
nh), which

was to be shown. ■

SA4.3 Proof of Lemma SA-3

Proof. The proof covers the case to the right of the cutoff. Throughout the proof, we maintain that n is large
enough so that k ≤ c + h in Assumption SA3. Everything follows symmetrically for the other case. First,
note that

Γ̂+,p,s(h) =

Λ̂+,p,p(h) Ĝ+,2(h)

Ĝ+,2(h)
′ Ĝ+,3(h)

 ,

where

Λ̂+,p,p(h) =
1

nh

n∑
i=1

1(Xi ≥ c)rp

(
Xi − c

h

)
rp

(
Xi − c

h

)′

K

(
Xi − c

h

)
,

Ĝ+,2(h) =
1

nh

n∑
i=1

1(Xi ≥ c)

[
W′

i ⊗K

(
Xi − c

h

)
rp

(
Xi − c

h

)
rs

(
Xi − c

h

)′
]
,

Ĝ+,3(h) =
1

nh

n∑
i=1

1(Xi ≥ c)

[
WiW

′
i ⊗K

(
Xi − c

h

)
rs

(
Xi − c

h

)
rs

(
Xi − c

h

)′
]
.

Then, from Lemma SA-2 we immediately have

Λ̂+,p,p(h) = Λ̃+,p,p(h) +OP(1/
√
nh).

Consider the expectation of Ĝ+,2(h). Using Assumption SA1 and the change of variable u = (x− c)/h:

E[Ĝ+,2(h)] = E

[
1

h
1(Xi ≥ c)

{
µW (Xi)

′ ⊗K

(
Xi − c

h

)
rp

(
Xi − c

h

)
rs

(
Xi − c

h

)′
}]

=

∞∫
0

µW (uh+ c)′ ⊗ rp (u) rs (u)
′
K(u)f(uh+ c) du =: G̃+,2(h),

The generic element of Ĝ+,2(h) is

1

nh

n∑
i=1

1(Xi ≥ c)Wiℓ ·
(
Xi − c

h

)j

K

(
Xi − c

h

)
, ℓ ∈ {1, · · · , d}, j ∈ {0, · · · , p+ s}.

Fix ℓ ∈ {1, · · · , d} and j ∈ {0, · · · , p+ s}. Then

V

[
1

nh

n∑
i=1

1(Xi ≥ c)Wiℓ ·
(
Xi − c

h

)j

K

(
Xi − c

h

)]

=
1

nh2
V

[
1(Xi ≥ c)Wiℓ ·

(
Xi − c

h

)j

K

(
Xi − c

h

)]
(Assumption SA1)

≤ 1

nh2
E

[
1(Xi ≥ c)W 2

iℓ ·
(
Xi − c

h

)2j

K

(
Xi − c

h

)2
]

=
1

nh

∞∫
0

µW 2
ℓ
(uh+ c)u2jK(u)2f(uh+ c) du = O(n−1h−1), (u = (x− c)/h)
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where the last equality follows because of Assumptions SA2, SA5, and the fact that µW 2
ℓ
(·) is bounded in a

neighborhood of c, which is granted by Assumption SA3a and k ≥ h. Hence, by Lemma SA-1

Ĝ+,2(h) = G̃+,2(h) +OP(1/
√
nh).

Consider Ĝ+,3(h). Using a similar logic as above

E[Ĝ+,3(h)] =
1

h
E

[
µWW (Xi)⊗ 1(Xi ≥ c)K

(
Xi − c

h

)
rs

(
Xi − c

h

)
rs

(
Xi − c

h

)′
]

=

∞∫
0

µWW (uh+ c)⊗K (u) rs (u) rs (u)
′
f(uh+ c) du =: G̃+,3(h)

and for ℓ, ℓ′ ∈ {1, · · · , d} and j ∈ {0, · · · , 2s}. Then

V

[
1

nh

n∑
i=1

1(Xi ≥ c)WiℓWiℓ′ ·
(
Xi − c

h

)j

K

(
Xi − c

h

)]

=
1

nh2
V

[
1(Xi ≥ c)WiℓWiℓ′ ·

(
Xi − c

h

)j

K

(
Xi − c

h

)]
(Assumption SA1)

≤ 1

nh2
E

[
1(Xi ≥ c)W 2

iℓW
2
iℓ′ ·

(
Xi − c

h

)2j

K

(
Xi − c

h

)2
]

=
1

nh

∞∫
0

E[W 2
iℓW

2
iℓ′ | Xi = uh+ c]u2jK(u)2f(uh+ c) du = O(n−1h−1), (u = (x− c)/h)

where the last equality follows because of Assumptions SA2, SA5, and the fact that E[W 2
iℓW

2
iℓ′ | Xi = uh+ c]

is bounded in [0, c+ h], which is granted by Assumption SA3e and k ≥ h.

Last, we prove that Γ̂+,p,s(h) is asymptotically invertible. To do so, note that by taking the limit as h → 0,
the continuity of f(·) (Assumption SA2), µW (·), and µWW (·) (Assumption SA3a) give us that

Λ̃+,p,p(h) = f(c)

∞∫
0

K(u)rp(u)rp(u)
′ du+ o(1) = Λ+,p,p + o(1),

G̃+,2(h) = µ′
W ⊗ f(c)

∞∫
0

K(u)rp(u)rs(u)
′ du+ o(1) = µ′

W ⊗Λ+,p,s + o(1) = G+,3 + o(1),

G̃+,3(h) = µWW ⊗ f(c)

∞∫
0

K(u)rs(u)rs(u)
′ du+ o(1) = µWW ⊗Λ+,s,s + o(1) = G+,3 + o(1).

Therefore,

Γ̂+,p,s(h) = Γ+,p,s + o(1) +OP(1/
√
nh), where Γ+,p,s =

[
Λ+,p,p G+,2

G′
+,2 G+,3

]
,

which is non-singular by Assumption SA3g. ■
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SA4.4 Proof of Lemma SA-4

Proof. First,

E[ζ̂+,p,s,a(h)] = E

[
1

nh

n∑
i=1

rp,s

(
Xi − c

h
,Wi

)
K

(
Xi − c

h

)(
Xi − c

h

)a+1
]

=

∞∫
0

K(u)rp,s(u,µW (uh+ c))ua+1f(c+ hu) du

= f(c)

∞∫
0

K(u)rp,s(u,µW )ua+1 du+O(h).

Moreover, the generic element of ζ̂+,p,s,a(h) is either

1

nh

n∑
i=1

1(Xi ≥ c)K

(
Xi − c

h

)(
Xi − c

h

)j+a+1

, j ∈ {0, 1, · · · , p},

or

1

nh

n∑
i=1

1(Xi ≥ c)K

(
Xi − c

h

)
Wiℓ ·

(
Xi − c

h

)j+a+1

, j ∈ {0, 1, · · · , s}, ℓ ∈ {1, · · · , d}.

The variances of these elements are of order O(n−1h−1). Indeed, the variance of the latter is

V

[
1

nh

n∑
i=1

1(Xi ≥ c)K

(
Xi − c

h

)
Wiℓ ·

(
Xi − c

h

)j+a+1
]

≤ 1

nh2
E

[
1(Xi ≥ c)K2

(
Xi − c

h

)
W 2

iℓ ·
(
Xi − c

h

)2(j+a+1)
]

=
1

nh

∞∫
0

µWℓ
(uh+ c)u2(j+a+1)K2(u)f(uh+ c) = O

(
1

nh

)
,

where for the last equality we used Assumptions SA1 and SA5 and k ≥ h. Then, ζ̂+,p,s,a(h) = E[ζ̂+,p,s,a(h)]+

OP(1/
√
nh) by Lemma SA-1. A similar argument goes through for φ̂+,p,s,a(h).

The last part of the lemma follows by taking the limit as h → 0 and using the continuity of f(·) (Assumption
SA2), µW (·), and µWW (·) (Assumption SA3a). ■

SA4.5 Proof of Lemma SA-5

Proof. Fix h > 0 and define

w+,i(h) := 1(Xi ≥ c)K

(
Xi − c

h

)
rp,s

(
Xi − c

h
,Wi

)
,

so that we can write

L+,p,s(h) =
1

nh

n∑
i=1

w+,i(h)u+,i(h).
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By the properties of ℓ2-residuals, we get that E[w+,i(h)u+,i(h)] = 0 and so E[L+,p,s(h)] = 0. The variance
of L+,p,s(h) is

V

[
1

nh

n∑
i=1

w+,i(h)u+,i(h)

]
=

1

n2h2

n∑
i=1

n∑
j=1

Cov(w+,i(h)u+,i(h),w+,j(h)u+,j(h))

=
1

nh2
V[w+,i(h)u+,i(h)] (Assumption SA1)

=
1

nh

1

h
E[w+,i(h)w+,i(h)

′u2
+,i(h)]︸ ︷︷ ︸

:=V+,p,s(h)

. (E[w+,i(h)u+,i(h)] = 0)

By the law of iterated expectations and changing variables, we get

V+,p,s(h) =

∞∫
0

f(uh+ c)K2(u)

 rp (u) rp (u)′ E[u2
+,i(h) | Xi = uh+ c] E[W′

iu
2
+,i(h) | Xi = uh+ c]⊗ rp (u) rs (u)

′

E[Wiu
2
+,i(h) | Xi = uh+ c]⊗ rs (u) rp (u)′ E[WiW

′
iu

2
+,i(h) | Xi = uh+ c]⊗ rs (u) rs (u)

′

 du,

Finally, the last part of the lemma follows by taking the limit as h → 0, using the properties of compact kernels
(Assumption SA5), the continuity of f(·) (Assumption SA2), and the bounded conditional fourth moments
of (Yi,W

′
i)

′ (Assumptions SA3d-SA3e), together with the Cauchy-Schwarz inequality and k ≥ h. ■

SA4.6 Proof of Theorem SA-1

Proof. Fix an arbitrary c ∈ R1+p+d \{01+p+d}. Consider

ϕ+,p,s(h) :=
√
nhc′Hp,s(h)(ϑ̂+,p,s(h)− ϑ⋆

+,p,s(h)) =
√
nhc′Γ̂−1

+,p,s(h)L+,p,s(h).

By Lemma SA-3 and Lemma SA-5, we get

ϕ+,p,s(h) = ϕ̇+,p,s(h) + oP(1), ϕ̇+,p,s(h) =
√
nhc′Γ̃−1

+,p,s(h)L+,p,s(h).

Then, by Lemma SA-5

V[
√
nhc′Γ̃−1

+,p,s(h)L+,p,s(h)] = c′Ω+,p,sc+ o(1), Ω+,p,s := Γ−1
+,p,sV+,p,sΓ

−1′
+,p,s.

Positive definiteness of Ω+,p,s follows from the fact that it is a product of symmetric positive definite matrices

(Lemma SA-3 and Lemma SA-5). Finally, by appropriately scaling ϕ̇+,p,s(h) by its variance, we can rewrite
it as

n∑
i=1

w+,i(h)u+,i(h),

with

w+,i(h) := (c′Ω+,p,sc)
−1/2

c′Γ̃−1
+,p,s(h)1(Xi ≥ c)K

(
Xi − c

h

)
rp,s

(
Xi − c

h
,Wi

)
/
√
nh.

Therefore, {w+,i(h)u+,i(h)}ni=1 is a triangular array of mean-zero row-wise independent summands with
variance converging to 1 to which we can apply a Lindeberg-Feller CLT. To do so, we verify the Lindeberg
condition by showing that the stronger Lyapunov condition holds for the fourth moment. To see this, by
Assumption SA3

n∑
i=1

E[|w+,i(h)ui(h)|4] ≲
1

nh2
·

∞∫
c

∣∣∣∣ĕ′νΓ̃−1
+,p,s(h)K

(
x− c

h

)
rp,s

(
x− c

h
,µW (x)

)∣∣∣∣4 f(x) dx = O

(
1

nh

)
,
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where the final order comes from the change of variables u = x−c
h and the fact that the resulting integral is

bounded by Assumptions SA2, SA3, and SA5. Therefore, we can conclude that

√
nhc′Hp,s(h)Γ̂

−1
+,p,s(h)L+,p,s(h)⇝ N(0, c′Ω+,p,sc).

As c was chosen arbitrarily, by the Cramér-Wold device we get

√
nhHp,s(h)Γ̂

−1
+,p,s(h)L+,p,s(h)⇝ N(01+p+d,Ω+,p,s),

which was to be shown. ■

SA4.7 Proof of Theorem SA-3

Proof. First, note that under the assumptions of Theorem SA-1, we get that

max
i∈[n]

L−,i = oP(1) and max
i∈[n]

L+,i = oP(1). (5)

The result above follows from Assumptions SA1, SA3, SA5, and Lemma SA-3.

Define ω+,i(h) := 1(Xi ≥ 0)K
(
Xi−c

h

)√
w+,i(h). First, note that

û+,i(h) = u+,i(h) + v̂+,i(h),

where u+,i(h) := Yi − rp,s(Xi − c,Wi)
′ϑ⋆

+,p,s(h) and v̂+,i(h) := rp,s(Xi − c,Wi)
′(ϑ⋆

+,p,s(h) − ϑ̂+,p,s(h)).
Then, focusing on the “meat” part of the estimator, we get

V̂+,p,s(h) =
1

nh

n∑
i=1

ω+,i(h)rp,s

(
Xi − c

h
,Wi

)
rp,s

(
Xi − c

h
,Wi

)′

û2
+,i(h)

=
1

nh

n∑
i=1

ω+,i(h)rp,s

(
Xi − c

h
,Wi

)
rp,s

(
Xi − c

h
,Wi

)′

u2
+,i(h) (:= V+,1(h))

+
1

nh

n∑
i=1

ω+,i(h)rp,s

(
Xi − c

h
,Wi

)
rp,s

(
Xi − c

h
,Wi

)′

v̂2+,i(h), (:= V+,2(h))

+
2

nh

n∑
i=1

ω+,i(h)rp,s

(
Xi − c

h
,Wi

)
rp,s

(
Xi − c

h
,Wi

)′

v̂+,i(h)u+,i(h). (:= V+,3(h))

For convenience, let VHC0
+,1(h) denote V+,1(h) when w+,i(h) = 1. Note that VHC0

+,1(h)
P−→ V+,p,s by the weak

law of large numbers. Then, it is immediate to see that VHC1
+,1(h) =

n−k
n VHC0

+,1(h) and so VHC1
+,1(h)

P−→ V+,p,s.
Regarding the HC2-type estimator, it suffices to note that

|VHC2
+,1(h)−VHC0

+,1(h)| ≤

(
1

nh

n∑
i=1

∣∣∣∣rp,s(Xi − c

h
,Wi

)∣∣∣∣2 u2
+,i(h)

)
·
∣∣∣∣ 1

1−maxi∈[n] Li
− 1

∣∣∣∣ ,
where the first term is OP(1) by Assumptions SA1-SA3 and the second term is oP(1) due to (5). A similar
argument works for the HC3-type estimator.

At this point, if we show that V+,j(h)
P−→ 0, j = 2, 3, then we have established the consistency of our

estimator for the variance of the RD estimator. Let’s start with V+,2(h):

|V+,2(h)| ≤
1

nh

n∑
i=1

|ω+,i(h)|
∣∣∣∣rp,s(Xi − c

h
,Wi

)∣∣∣∣2 ∣∣∣∣rp,s(Xi − c

h
,Wi

)∣∣∣∣2 ∣∣∣Hp,s(h)
(
ϑ̂+,p,s(h)− ϑ⋆

+,p,s(h)
)∣∣∣2
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≤
∣∣∣Hp,s(h)

(
ϑ̂+,p,s(h)− ϑ⋆

+,p,s(h)
)∣∣∣2 ·max

i∈[n]
|ω+,i(h)| ·

1

nh

n∑
i=1

∣∣∣∣rp,s(Xi − c

h
,Wi

)∣∣∣∣4 .
The first term on the right-hand side is OP(n

−1h−1) by Theorem SA-1, the second term is OP(1) by (5),
whereas the third term is OP(1) as it converges in probability to its expectation which is

∞∫
0

f(uh+ c)K(u) |rp,s(u,µW (uh+ c))|4 du,

which is finite because of Assumptions SA2, SA3, and SA5. Therefore, V+,2(h) = oP(1).

Then

|V+,3(h)| ≤
∣∣∣Hp,s(h)

(
ϑ̂+,p,s(h)− ϑ⋆

+,p,s(h)
)∣∣∣ ·max

i∈[n]
|ω+,i(h)| ·

1

nh

n∑
i=1

∣∣∣∣rp,s(Xi − c

h
,Wi

)∣∣∣∣3 |u+,i(h)|.

The first term on the right-hand side is OP(1/
√
nh) by Theorem SA-1. The second term is OP(1) by(5). To

see that the third term is OP(1), note that by the Hölder’s inequality

E

[∣∣∣∣rp,s(Xi − c

h
,Wi

)∣∣∣∣3 |u+,i(h)|

]
≤

 ∞∫
0

f(uh+ c)K(u) |rp,s (u,µW (uh+ c))|3 du

3/4

E[u4
+,i(h)]

1/4,

which is finite because of Assumptions SA2, SA3, and SA5. Therefore, V+,3(h) = OP(1/
√
nh) = oP(1).

In conclusion, we showed that

V̂+,p,s(h) =

3∑
ℓ=1

V+,ℓ(h),

where V+,1(h) converges in probability to V+,p,s(h) and the other terms are all oP(1). Moreover, Lemma

SA-3 gives us Γ̂−1
+,p,s(h)

P−→ Γ−1
+,p,s. Hence, by Slutsky’s theorem

V̂+,ν,p,s(h)
P−→ V+,ν,p,s. ■

SA4.8 Proof of Lemma SA-6

Proof. Let q := p∨ s. First of all, if we take a (q+2)-th order Taylor expansion of µ+(·,w) around c, we get

ϑ⋆
+,p,s(h) = H−1

p,s(h)Γ̃
−1
+,p,s(h)E

[
1

h
1(Xi ≥ c)K

(
Xi − c

h

)
rp,s

(
Xi − c

h
,Wi

)
µ(Xi,Wi)

]
= ϑ+,p,s +H−1

p,s(h)Γ̃+,p,s(h)
−1

(
hp+1ζ̃+,p,s,p(h)

α
(p+1)
+ (c)

(p+ 1)!
+ hp+2ζ̃+,p,s,p+1(h)

α
(p+2)
+ (c)

(p+ 2)!

)

+H−1
p,s(h)Γ̃+,p,s(h)

−1

(
hs+1φ̃+,p,s,s(h)

λ
(s+1)
+ (c)

(s+ 1)!
+ hs+2φ̃+,p,s,s+1(h)

λ
(s+2)
+ (c)

(s+ 2)!

)
+ o(h2+p∧s),

where

ζ̃+,p,s,a(h) =

∞∫
0

K(u)rp,s(u,µW (uh+ c))ua+1f(uh+ c) du,
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φ̃+,p,s,a(h) =

∞∫
0

K(u)

[
rp(u)µW (uh+ c)′

µWW (uh+ c)⊗ rs(u)

]
ua+1f(uh+ c) du.

The o(h2+p∧s) term comes from the integral form of the remainder of the Taylor expansion. Suppose p = s.
The remainder is of the form

v+(h) =

∞∫
0

∫
Rd

K (u) rp,s (u,w)

uh+c∫
c

(
µ
(p+3)
+ (t,w)

(p+ 2)!
(uh+ c− t)p+2

)
dtfX,W (uh+ c,w) dw du.

Being µ
(p+3)
+ (x,w) continuous by Assumption SA3b, k ≥ h, and using Assumptions SA2 and SA5, we get

v+(h) = o(h2+p).

Whenever s ̸= p, the remainder v+(h) includes additional terms we ignored in the linearization above. These
terms will always include either α(ℓ)(c), ℓ ≥ p + 3 or λ(ℓ)(c), ℓ ≥ s + 3 and be of order o(h2+p) and o(h2+s),
respectively.

The last part of the lemma follows by taking the limit as nh → ∞ and h → 0 and relying on Lemma SA-3
and SA-4. ■
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