
JSS Journal of Statistical Software
MMMMMM YYYY, Volume VV, Issue II. doi: 10.18637/jss.v000.i00

scpi: Uncertainty Quantification for Synthetic
Control Methods

Matias D. Cattaneo
Princeton University

Yingjie Feng
Tsinghua University

Filippo Palomba
Princeton University

Rocío Titiunik
Princeton University

Abstract

The synthetic control method offers a way to quantify the effect of an intervention
using weighted averages of untreated units to approximate the counterfactual outcome
that the treated unit(s) would have experienced in the absence of the intervention. This
method is useful for program evaluation and causal inference in observational studies. We
introduce the software package scpi for prediction and inference using synthetic controls,
implemented in Python, R, and Stata. For point estimation or prediction of treatment ef-
fects, the package offers an array of (possibly penalized) approaches leveraging the latest
optimization methods. For uncertainty quantification, the package offers the prediction
interval methods introduced by Cattaneo, Feng, and Titiunik (2021) and Cattaneo, Feng,
Palomba, and Titiunik (2025). The paper includes numerical illustrations and a compar-
ison with other synthetic control software.

Keywords: program evaluation, causal inference, synthetic controls, prediction intervals, non-
asymptotic inference, R, Python, Stata.

1. Introduction
The synthetic control method was introduced by Abadie and Gardeazabal (2003), and since
then it has become a popular approach for program evaluation and causal inference in obser-
vational studies. It offers a way to study the effect of an intervention (e.g., treatments at the
level of aggregate units, such as cities, states, or countries) by constructing weighted averages
of untreated units to approximate the counterfactual outcome that the treated unit(s) would
have experienced in the absence of the intervention. While originally developed for the special

https://doi.org/10.18637/jss.v000.i00
https://orcid.org/0000-0003-0493-7506
https://orcid.org/0000-0002-9413-3239
https://orcid.org/0000-0002-6400-3142
https://orcid.org/0000-0001-5145-3059

2 scpi: Synthetic Control

case of a single treated unit and a few control units over a short time span, the methodology
has been extended in recent years to a variety of other settings with longitudinal data. See
Abadie (2021) for a review on synthetic control methods, and Abadie and Cattaneo (2018)
for a review on general methods for program evaluation.
Most methodological developments in the synthetic control literature have focused on either
expanding the causal framework or developing new implementations for prediction/point es-
timation. Examples of the former include disaggregated data settings (Abadie and L’Hour
2021) and staggered treatment adoption (Ben-Michael, Feller, and Rothstein 2022), while
examples of the latter include employing different constrained estimation methods (see Table
3 below for references). Conceptually, the implementation of the synthetic control method
involves two main steps: first, treated units are “matched” to control units using only their
pre-intervention data via (often constrained) regression methods, and second, prediction of the
counterfactual outcomes of the treated units are obtained by combining the pre-intervention
“matching” weights with the post-intervention data of the control units. As a result, the
synthetic control approach offers a prediction or point estimator of the (causal) treatment
effect for the treated unit(s) after the intervention is deployed.
Compared to prediction or estimation, considerably less effort has been devoted to develop-
ing principled uncertainty quantification for synthetic control methods. The most popular
approach in practice is to employ design-based permutation methods taking the potential
outcome variables as non-random (Abadie, Diamond, and Hainmueller 2010). Other ap-
proaches include methods based on large-sample approximations for disaggregated data un-
der correctly specified factor-type models (Li 2020), time-series permutation-based inference
(Chernozhukov, Wüthrich, and Zhu 2021), large-sample approximations for high-dimensional
penalization methods (Masini and Medeiros 2021), and cross-sectional permutation-based in-
ference in semiparametric duration-type settings (Shaikh and Toulis 2021). A conceptually
distinct approach to uncertainty quantification is proposed by Cattaneo, Feng, and Titiunik
(2021) and Cattaneo, Feng, Palomba, and Titiunik (2025), who take the potential outcome
variables as random and develop prediction intervals for the imputed (counterfactual) out-
come of the treated unit(s) in the post-intervention period employing finite-sample probability
concentration methods.
This article introduces the software package scpi for prediction and inference using synthetic
control methods, implemented in Python (van Rossum et al. 2011; Cattaneo, Feng, Palomba,
and Titiunik 2024a), R (R Core Team 2024; Cattaneo, Feng, Palomba, and Titiunik 2024b),
and Stata (StataCorp 2019; Cattaneo, Feng, Palomba, and Titiunik 2024c). For prediction
or point estimation of treatment effects, the package offers an array of possibly penalized ap-
proaches leveraging the latest conic optimization methods (Domahidi, Chu, and Boyd 2013;
Fu, Narasimhan, and Boyd 2020); see also Boyd and Vandenberghe (2004) for an introduc-
tion. For uncertainty quantification, the package focuses on the aforementioned prediction
interval methods under random potential outcomes. The rest of the article focuses on the R
implementation of the software, but we briefly illustrate analogous functionalities for Python
in Appendix A, and for Stata in Appendix B.
The R package scpi includes the following six functions:

• scdata() and scdataMulti(). These functions take as input a ‘DataFrame’ object and
process it to prepare the data matrices used for point estimation/prediction and infer-
ence/uncertainty quantification. The function scdata is specific to the single treated unit

Journal of Statistical Software 3

case, whereas scdataMulti can be used with multiple treated units and/or when treatment
is adopted in a staggered fashion. Both functions allow the user to specify multiple features
of the treated unit(s) to be matched by the synthetic unit(s), as well as feature-specific
covariate adjustment, and can handle both independent and identically distributed (i.i.d.)
and non-stationary (cointegrated) data.

• scest(). This function handles ‘scpi_data’ or ‘scpi_data_multi’ objects produced with
scdata() or scdataMulti(), respectively, and then implements a class of synthetic con-
trol predictions/point estimators for quantification of treatment effects. The implementa-
tion allows for multiple features, with and without additional covariate adjustment, and
for both stationary and non-stationary data. The allowed prediction procedures include
unconstrained weighted least squares as well as constrained weighted least squares with
simplex, lasso-type, ridge-type parameter space restrictions and combinations thereof (see
Table 2 below).

• scpi(). This function takes as input an ‘scpi_data’ object produced with scdata() or an
‘scpi_data_multi’ object produced with scdataMulti(), and then computes prediction
intervals for a class of synthetic control predictions/point estimators for quantification of
treatment effects. It relies on scest() for point estimation/prediction of treatment effects,
and thus inherits the same functionalities of that function. In particular, scpi() is designed
to be the main function in applications, offering both predictions/point estimators for
treatment effects as well as inference/uncertainty quantification (i.e., prediction intervals)
for synthetic control methods. The function also allows the user to separately model
in-sample and out-of-sample uncertainty, offering a broad range of options for practice.

• scplot() and scplotMulti(). These functions process objects whose class is either
‘scest’ or ‘scpi’. These objects contain the results of the point estimation/prediction
or uncertainty quantification methods, respectively. The commands build on the ggplot2
package (Wickham 2016) in R to compare the time series for the outcome of the treated
unit(s) with the outcome time series of the synthetic control unit, along with the associated
uncertainty. The functions return a ‘ggplot’ object that can be further modified by the
user.

The objects returned by scest() and scpi() support the methods print() and summary().
In typical applications, the user will first prepare the data using the function scdata() or
scdataMulti(), and then produce predictions/point estimators for treatment effects with
uncertainty quantification using the function scpi(). The function scest() is useful in cases
where only predictions/point estimators are of interest. Numerical illustrations are given in
Section 5.
There are many Python, R, and Stata packages available for prediction/point estimation and
inference using synthetic control methods; Table 1 compares them to the package scpi.1 As

1The table includes the following additional packages: allsynth (Wiltshire 2024); ArCo (Fonseca, Masini,
Medeiros, and Vasconcelos 2017); augsynth (Ben-Michael 2024); gsynth (Xu and Liu 2021); microsynth (Rob-
bins and Davenport 2023, 2021); MSCMT (Becker and Klössner 2024); npsynth (Cerulli 2020); pensynth (van
Kesteren and Slaughter 2024); pgsc (Barrett 2018); scinference (Wuthrich 2021); SCtools (Silva and DeWitt
2024); scul (Greathouse 2022); SCUL (Hollingsworth 2024); Synth (Abadie, Diamond, and Hainmueller 2011;
Hainmueller and Diamond 2023); SyntheticControlMethods (Engelbrektson 2021); synth2 (Chen 2023); syn-
thdid (Arkhangelsky, Athey, Hirshberg, Imbens, and Wager 2024); tidysynth (Dunford 2023); treebased-sc
(Muehlbach 2021).

4 scpi: Synthetic Control

shown in the table, scpi is the first package to offer uncertainty quantification using predic-
tion intervals with random potential outcomes for a wide range of different synthetic con-
trol predictors. The package is also one of the first to handle multiple treated units and
staggered treatment adoption, offering a wider array of options in terms of predictors and
inference methods when compared with the other packages currently available. Furthermore,
the package includes misspecification-robust methods, employs the latest available optimiza-
tion packages for conic programs, and offers automatic parallelization in execution whenever
multi-core processors are present, leading to significant improvements in numerical stability
and computational speed. Finally, scpi is the only package available in Python, R, and Stata,
which gives full portability across multiple statistical software and programming languages,
and also the only package employing directly native conic optimization via the ECOS solver
(see Table 4 for details).

Package Statistical Prediction Inference Multiple Staggered Misspecification Automatic Last
name platform method method treated adoption robust parallelization update

ArCo R LA Asym ✓ 2017-11-05
pgsc R SC Perm ✓ 2018-10-28
npsynth St SC Perm 2020-06-23
scinference R SC, LA Perm ✓ 2021-05-13
gsynth R FA Asym ✓ ✓ ✓ 2021-08-06

Synth Py SC Perm 2021-10-07
treebased-sc Py TB Perm ✓ 2021-11-01
scul St LA Perm ✓ 2022-08-21
tidysynth R SC Perm 2023-05-21
Synth R, St SC Perm 2023-06-02

microsynth R CA Perm ✓ ✓ 2023-06-30
augsynth R SC, RI Perm ✓ ✓ 2024-09-09
synth2 St SC Perm 2023-10-05
SCUL R LA Perm 2023-10-10
sytnhdid R LS, RI Asym ✓ ✓ 2024-01-15

MSCMT R SC Perm ✓ 2024-03-19
pensynth R LA Perm 2024-03-28
SCtools R SC Perm ✓ ✓ 2024-05-01
allsynth St SC Perm ✓ ✓ 2024-07-11

scpi Py, R, St SC, LA, RI, LS, + PI, Asym, Perm ✓ ✓ ✓ ✓ 2024-11-11

Table 1: Comparison of different packages available on PyPi, CRAN, REPEC, or GitHub. Py =
Python (https://www.python.org/); R = R (https://cran.r-project.org/); St = Stata
(https://www.stata.com/); LA = Lasso penalty; CA = calibration; FA = factor-augmented
models; LS = unconstrained least squares; RI = Ridge penalty; SC = canonical synthetic con-
trol; TB = tree-based methods; + = user-specified options (see Table 3 below for more details);
Perm = permutation-based inference; Asym = asymptotic-based inference; PI = prediction in-
tervals (non-asymptotic probability guarantees). The symbol ✓ means that the feature is
available. The last column reports the date of last update as of November 19, 2024.

The rest of the article is organized as follows. Section 2 introduces the canonical synthetic
control setup and briefly discusses extensions to multiple treated units with possibly stag-
gered treatment adoption. Section 3 gives a brief introduction to the theory and method-
ology underlying point estimation/prediction for synthetic control methods, discussing im-
plementation details. Section 4 gives a brief introduction to the theory and methodology
underlying uncertainty quantification via prediction intervals for synthetic control meth-

https://cran.r-project.org/web/packages/ArCo/index.html
https://cran.r-project.org/web/packages/pgsc/index.html
https://ideas.repec.org/c/boc/bocode/s458398.html
https://github.com/kwuthrich/scinference
https://cran.r-project.org/web/packages/gsynth/index.html
https://pypi.org/project/SyntheticControlMethods
https://pypi.org/project/treebased-synthetic-controls
https://ideas.repec.org/c/boc/bocode/s459107.html
https://cran.r-project.org/web/packages/tidysynth/index.html
https://cran.r-project.org/web/packages/Synth/index.html
https://cran.r-project.org/web/packages/microsynth/index.html
https://github.com/ebenmichael/augsynth
https://ideas.repec.org/c/boc/bocode/s459017.html
https://github.com/hollina/scul
https://github.com/synth-inference/synthdid
https://cran.r-project.org/web/packages/MSCMT/index.html
https://cran.r-project.org/web/packages/pensynth/index.html
https://cran.r-project.org/web/packages/SCtools/index.html
https://ideas.repec.org/c/boc/bocode/s459076.html
https://nppackages.github.io/scpi/
https://www.python.org/
https://cran.r-project.org/
https://www.stata.com/

Journal of Statistical Software 5

ods, and also discusses the corresponding issues of implementation. Section 5 showcases
some of the functionalities of the package using a real-world dataset, and Section 6 con-
cludes. The appendices illustrate the Python (Appendix A) and Stata (Appendix B) im-
plementations of scpi. Detailed instructions for installation, script files to replicate the
analyses, links to software repositories, and other companion information can be found on
the package’s website, https://nppackages.github.io/scpi/. The package scpi (Cat-
taneo et al. 2024b) is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=scpi.

2. Setup
We first consider the canonical synthetic control framework with a single treated unit. The
researcher observes J + 1 units for T0 + T1 periods of time. Units are indexed by i =
1, 2, . . . J, J + 1, and time periods are indexed by t = 1, 2, . . . , T0, T0 + 1, . . . , T0 + T1. During
the first T0 periods, all units are untreated. Starting at T0 + 1, unit 1 receives treatment but
the other units remain untreated. Once the treatment is assigned at T0 +1, there is no change
in treatment status: the treated unit continues to be treated and the untreated units remain
untreated until the end of the series, T1 periods later. The single treated unit in our context
could be understood as an “aggregate” of multiple treated units; see Section 2.1 below for
more discussion.
Each unit i at period t has two potential outcomes, Yit(1) and Yit(0), respectively denoting
the outcome under treatment and the outcome in the absence of treatment. Two implicit
assumptions are imposed: no spillovers (the potential outcomes of unit i depend only on
i’s treatment status) and no anticipation (the potential outcomes at t depend only on the
treatment status of the same period). Then, the observed outcome Yit is

Yit =


Yit(0), if i ∈ {2, . . . , J + 1}
Yit(0), if i = 1 and t ∈ {1, . . . , T0}
Yit(1), if i = 1 and t ∈ {T0 + 1, . . . , T0 + T1}

.

The causal quantity of interest is the difference between the outcome path taken by the treated
unit, and the path it would have taken in the absence of the treatment:

τt := Y1t(1) − Y1t(0), t > T0.

We view the two potential outcomes Y1t(1) and Y1t(0) as random variables, which implies
that τt is a random quantity as well, corresponding to the treatment effect on a single treated
unit. This contrasts with other analysis that regards the treatment effect as a fixed parameter
(for references, see Abadie 2021).
The potential outcome Y1t(1) of the treated unit is observed after the treatment. To recover
the treatment effect τt, it is necessary to have a “good” prediction of the counterfactual
outcome of the treated unit, Y1t(0), after the intervention. The idea of the synthetic control
method is to find a vector of weights w = (w2, w3, . . . , wJ+1)⊤ such that a given loss function is
minimized under constraints, only using pre-intervention observations. Given the resulting set
of constructed weights ŵ, the treated unit’s counterfactual (potential) outcome is calculated
as Ŷ1t(0) =

∑J+1
i=2 ŵiYit(0) for t > T0. The weighted average Ŷ1t(0) is often referred to as the

https://nppackages.github.io/scpi/
https://CRAN.R-project.org/package=scpi

6 scpi: Synthetic Control

synthetic control of the treated unit, as it represents how the untreated units can be combined
to provide the best counterfactual for the treated unit in the post-treatment period. In what
follows, we briefly describe different approaches for point estimation/prediction leading to
Ŷ1t(0), and then summarize the uncertainty quantification methods to complement those
predictions.

2.1. Extensions

Building on the canonical synthetic control setup, we can consider other settings involving
multiple treated units with possibly staggered treatment adoption. In particular, we briefly
discuss three potential extensions of practical interest.

• Multiple post-treatment periods. When outcomes are observed in multiple periods
after the treatment, a researcher might be interested in the average treatment effect on
the (single) treated unit across multiple post-treatment periods rather than the effect at a
single period:

τ := 1
T1

T0+T1∑
t=T0+1

(
Y1t(1) − Y1t(0)

)
= 1

T1

T0+T1∑
t=T0+1

τt.

The analysis of this quantity can be accommodated by the framework above. For instance,
given the predicted counterfactual outcome Ŷ1t(0) =

∑J+1
i=2 ŵiYit(0) for each post-treatment

period t > T0, the predicted average counterfactual outcome of the treated is given by

J+1∑
i=2

ŵi

(1
T1

T0+T1∑
t=T0+1

Yit(0)
)
.

This construction is equivalent to regarding the T1 post-treatment periods as a “single” pe-
riod and defining the post-treatment predictors as averages of the corresponding predictors
across post-treatment time periods.

• Multiple treated units. The canonical single treated unit framework above can also
be extended to the more general case of multiple treated units. For instance, suppose a
researcher observes N0 + N1 units for T0 + T1 time periods, and let units be indexed
by i = 1, . . . , N1, N1 + 1, . . . , N1 + N0. Without loss of generality, the first 1 to N1
units are assumed to be treated, and units from N1 + 1 to N1 + N0 to be untreated.
Treated and untreated potential outcomes are, respectively, denoted by Yit(1) and Yit(0)
for i = 1, . . . , N0 + N1. The observed outcome of the ith treated unit is given by
Yit := 1(t ≤ T0)Yit(0) + 1(t > T0)Yit(1).
In such a setting, a researcher might be interested in the individual treatment effect τit

τit := Yit(1) − Yit(0), t > T0, i = 1, . . . , N1,

or in the average treatment effect on the treated τ·t across treated units

τ·t := 1
N1

N1∑
j=1

(
Yjt(1) − Yjt(0)

)
, t > T0.

The first causal quantity, τit, can be predicted in the single treated unit framework de-
scribed above by considering one treated unit at a time. As an alternative, the construction

Journal of Statistical Software 7

of synthetic control weights and thus the prediction of treatment effects τit’s could be done
using all N1 treated units jointly. Our software implementation allows for both possibili-
ties. From a conceptual point of view, which method is more appropriate depends on the
question under study. In some cases, interest may be on the predictand for an individual
unit, while in other cases the focus may be on the effects for all treated units jointly.
From a computational point of view, joint prediction will be more costly than individual
prediction. See Section 3 of Cattaneo, Feng, Palomba, and Titiunik (2025) for a formal
synthetic control framework with multiple treated units and a detailed discussion about
the two prediction strategies in this context.

To predict the second causal quantity, τ·t, one extra step is necessary. Define an aggregate
unit “ave” whose observed outcome is Y ave

t := 1
N1

∑N1
j=1 Yjt, for t = 1, . . . , T0 + T1. Other

features of “unit ave” used in the synthetic control construction can be defined similarly
as averages of the corresponding features across multiple treated units. The single treated
unit framework described above can now be applied to the average unit with outcome Y ave

t .

• Staggered treatment adoption. Our framework can also be extended to the scenario
where multiple treated units are assigned to treatment at different points in time, a stag-
gered adoption design. In this case, one can understand the adoption time as a multivalued
treatment assignment, and a large class of causal quantities can be defined accordingly. For
example, let Ti ∈ {T0+1, T0+2, . . . , T, ∞} denote the adoption time of unit i where Ti = ∞
means unit i is never treated, and Yit(s) represents the potential outcome of unit i at time
t that would be observed if unit i had adopted the treatment at time s. Suppose that the
treatment effect on unit i one period after the treatment, i.e., Yi(Ti+1)(Ti) − Yi(Ti+1)(∞),
is of interest. One can take all units that are treated later than Ti + 1 to obtain the syn-
thetic control weights and construct the synthetic control prediction of the counterfactual
outcome Yi(Ti+1)(∞) accordingly. The methodology described below can be immediately
applied to this problem.

The package scpi allows for estimation/prediction of treatment effects and uncertainty quan-
tification via prediction intervals for the more general synthetic control settings discussed
above. However, in order to streamline the exposition, the rest of this article focuses on the
case of a single treated unit. See Cattaneo, Feng, Palomba, and Titiunik (2025) for a for-
mal treatment of more general staggered adoption problems, and its supplemental appendix
for further details on how the package scpi can be used in settings with multiple treatment
units and staggered treatment adoption. Our companion replication files illustrate both the
canonical single treated unit framework and the generalizations discussed above.

3. Synthetic control prediction
We consider synthetic control weights constructed simultaneously for M features of the
treated unit, denoted by Al = (a1,l, · · · , aT0,l)⊤ ∈ RT0 , with index l = 1, . . . , M . For
each feature l, there exist J + K variables that can be used to predict or “match” the T0-
dimensional vector Al. These J + K variables are separated into two groups denoted by
Bl = (B1,l, B2,l, · · · , BJ,l) ∈ RT0×J and Cl = (C1,l, · · · , CK,l) ∈ RT0×K , respectively. More
precisely, for each j, Bj,l = (bj1,l, · · · , bjT0,l)⊤ corresponds to the lth feature of the jth unit
observed in T0 pre-treatment periods and, for each k, Ck,l = (ck1,l, · · · , ckT0,l)⊤ is another

8 scpi: Synthetic Control

vector of control variables also possibly used to predict Al over the same pre-intervention
time span. For ease of notation, we let d = J + KM .
The goal of the synthetic control method is to search for a vector of common weights w ∈ W ⊆
RJ across the M features and a vector of coefficients r ∈ R ⊆ RKM , such that the linear
combination of Bl and Cl “matches” Al as close as possible, during the pre-intervention
period, for all 1 ≤ l ≤ M and some convex feasibility sets W and R that capture the
restrictions imposed. Specifically, we consider the following optimization problem:

β̂ := (ŵ⊤, r̂⊤)⊤ ∈ arg min
w∈W, r∈R

(A − Bw − Cr)⊤V(A − Bw − Cr) (1)

where

A︸︷︷︸
T0·M×1

=

 A1
...

AM

 , B︸︷︷︸
T0·M×J

=

 B1
...

BM

 , C︸︷︷︸
T0·M×K·M

=


C1 0 · · · 0
0 C2 · · · 0
...

...
0 0 · · · CM


and V is a T0 · M × T0 · M weighting matrix reflecting the relative importance of different
equations and time periods.
From (1), we can define the pseudo-true residual u as

u = A − Bw0 − Cr0, (2)

where w0 and r0 denote the mean squared error population analog of ŵ and r̂. As discussed in
the next section, the proposed prediction intervals are valid conditional on some information
set H . Thus, w0 and r0 above are viewed as the (possibly constrained) best linear prediction
coefficients conditional on H . We do not attach any structural meaning to w0 and r0: they
are only (conditional) pseudo-true values whose meaning should be understood in context,
and are determined by the assumptions imposed on the data generating process. In other
words, we allow for misspecification when constructing the synthetic control weights ŵ, as
this is the most likely scenario in practice.
Given the constructed weights ŵ and coefficients r̂, the counterfactual outcome at the post-
treatment period T for the treated unit, Y1T (0), is predicted by

Ŷ1T (0) = x⊤
T ŵ + g⊤

T r̂ = p⊤
T β̂, pT := (x⊤

T , g⊤
T)⊤, T > T0, (3)

where xT ∈ RJ is a vector of predictors for control units observed in time T and gT ∈ RKM

is another set of user-specified predictors observed at time T . Variables included in xT and
gT need not be the same as those in B and C, but in practice it is often the case that
xT = (Y2T (0), · · · , Y(J+1)T (0))⊤ and gT is excluded when C is not specified.

The next Section discusses implementation details leading to Ŷ1T (0), including the choice of
feasibility sets W and R, weighting matrix V, and additional covariates C.

3.1. Implementation

The function scdata() in scpi prepares the data for point estimation/prediction purposes.
This function takes as input an object of class ‘DataFrame’ and outputs an object of class

Journal of Statistical Software 9

‘scpi_data’ containing the matrices A, B, C described above, and a matrix of post-treatment
predictors P = (pT0+1, · · · , pT0+T1)⊤. The user must provide a variable containing a unit
identifier (id.var), a time variable (time.var), an outcome variable (outcome.var), the
features to be matched (features), the treated unit (unit.tr), the control units (unit.co),
the pre-treatment periods (period.pre), and the post-treatment periods (period.post).
These options completely specify A, B, and P. The user can also control the form of R in (1)
or, equivalently, the form of C, through the options cov.adj and constant. The former
option allows the user to flexibly specify covariate adjustment feature by feature, while the
latter option introduces a column vector of ones of size T0 ·M in C. If M = 1, this is a simple
constant term, but if M ≥ 2 it corresponds to an intercept which is common across features.
The use of the options cov.adj and constant is best explained through some examples. If
the user specifies only one feature (M = 1), then cov.adj can be an unnamed list:

R> cov.adj <- list(c("constant", "trend"))

This particular choice includes in C a constant term and a linear time trend. If instead
multiple features (M ≥ 2) are used to find the synthetic control weights ŵ, then cov.adj
allows for feature-specific covariate adjustment. For example, in a two-feature setting (M =
2), the code

R> cov.adj <- list("f1" = c("constant", "trend"), "f2" = c("trend"))

specifies C as a block diagonal matrix where the first block C1 contains a constant term and
a trend, while the second block C2 contains only a trend. If the user wants all features to
share the same covariate adjustment, then it is sufficient to input a list with a unique element:

R> cov.adj <- list(c("constant", "trend"))

This specification creates a block diagonal matrix C with identical blocks. In the same
example with M = 2, if constant <- TRUE and cov.adj <- NULL, then C would not be
block diagonal, but rather a column vector of ones of size 2T0.
Finally, if A and B form a cointegrated system, by setting the option cointegrated.data
to TRUE in scdata(), the matrix P is prepared in such a way that the function scpi() will
properly handle in-sample and out-of-sample uncertainty quantification (see Section 4.3).
Once all the design matrices A, B, C, and P have been created, we can proceed with point
estimation/prediction of the counterfactual outcome of interest via the function scest().
The form of the feasibility set W in (1) or, equivalently, the constraints imposed on the
weights w, can be set using the option w.constr. The package allows for the following family
of constraints:

W ∈
{
RJ , {w ∈ W : ||w||p ≤ Q}, {w ∈ RJ : ||w||1 = Q, ||w||2 ≤ Q2}

}
,

W ∈ {RJ ,RJ
+}, p ∈ {1, 2}, Q ∈ R++, Q2 ∈ R++,

where the inequality constraint on the norm can be made an equality constraint as well. The
user can specify the desired form for W through a list to be passed to the option w.constr:

10 scpi: Synthetic Control

Name w.constr Form of W

OLS list(name = "ols") RJ

Simplex list(name = "simplex", Q = Q) {w ∈ RJ
+ : ||w||1 = Q}

Lasso list(name = "lasso", Q = Q) {w ∈ RJ : ||w||1 ≤ Q}
Ridge list(name = "ridge", Q = Q) {w ∈ RJ : ||w||2 ≤ Q}
L1-L2 list(name = "L1-L2", Q = Q, Q2 = Q2) {w ∈ RJ

+ : ||w||1 = Q, ||w||2 ≤ Q2}

Table 2: Constraints on the weights directly implemented in scpi.

R> W1 <- list(p = "no norm", lb = -Inf)
R> W2 <- list(p = "L1", dir = "==", Q = 1, lb = 0)
R> W3 <- list(p = "L2", dir = "<=", Q = 1, lb = -Inf)
R> W4 <- list(p = "L1-L2", lb = 0, Q = 1, Q2 = 1, dir = "==/<=")

The four lines above create W1 = RJ , W2 = {w ∈ RJ
+ : ||w||1 = 1}, W3 = {w ∈ RJ : ||w||2 ≤

1}, and W4 = {w ∈ RJ
+ : ||w||1 = 1, ||w||2 ≤ 1}, respectively. In greater detail,

• p chooses the constrained norm of w among the options ‘no norm’, ‘L1’, ‘L2’, or
‘L1-L2’.

• dir sets the direction of the constraint ||w||p and it can be either ‘==’, ‘<=’, or ‘==/<=’.

• Q is the size of the constraint and it can be set to any positive real number.

• lb sets a (common) lower bound on w and it takes as input either 0 or -Inf.

Popular constraints can be called explicitly using the option name in the list passed to
w.constr. Table 2 gives prototypical examples of such constraints. In particular, speci-
fying list(name = "simplex", Q = 1) gives the standard constraint used in the canonical
synthetic control method, that is, computing weights in (1) such that they are non-negative
and sum up to one, and without including an intercept. This is the default in the function
scest() (and scpi()). The following snippet showcases how each of these five constraints
can be called automatically through the option name and manually through the options p, Q,
Q2, lb, and dir. For simplicity, Q and Q2 are set to 1 for ridge and L1-L2 constraints, but to
replicate the results obtained with the option name one should input the proper Q according
to the rules of thumb described further below.

R> w.constr <- list(name = "simplex")
R> w.constr <- list(p = "L1", lb = 0, Q = 1, dir = "==")

R> w.constr <- list(name = "ols")
R> w.constr <- list(p = "no norm", lb = -Inf, Q = NULL, dir = NULL)

R> w.constr <- list(name = "lasso")
R> w.constr <- list(p = "L1", lb = -Inf, Q = 1, dir = "<=")

R> w.constr <- list(name = "ridge")

Journal of Statistical Software 11

Article W R w.constr
constant

name Q Q2

Hsiao et al. (2012) RJ R "ols" NULL NULL TRUE
Abadie et al. (2010) {w ∈ RJ

+ : ||w||1 = 1} {0} "simplex" 1 NULL FALSE
Ferman and Pinto (2021) {w ∈ RJ

+ : ||w||1 = 1} R "simplex" 1 NULL TRUE
Chernozhukov et al. (2021) {w ∈ RJ : ||w||1 ≤ 1} R "lasso" 1 NULL TRUE
Amjad et al. (2018) {w ∈ RJ : ||w||2 ≤ Q} {0} "ridge" Q NULL FALSE
Arkhangelsky et al. (2021) {w ∈ RJ

+ : ||w||1 = 1, ||w||2 ≤ Q2} R "L1-L2" 1 Q TRUE

Table 3: Examples of W and R in the synthetic control literature (M = 1).

R> w.constr <- list(p = "L2", lb = -Inf, Q = 1, dir = "<=")

R> w.constr <- list(name = "L1-L2")
R> w.constr <- list(p = "L1-L2", lb = 0, Q = 1, Q2 = 1, dir = "==/<=")

Using the option w.constr in scest() (or scpi()) and the options cov.adj and constant
in scdata() appropriately, i.e., setting W and R in (1), many synthetic control estimators
proposed in the literature can be implemented. Table 3 provides a non-exhaustive list of such
examples.

Tuning parameter choices

We provide rule-of-thumb choices of the tuning parameter Q for Lasso- and Ridge-type con-
straints.

• Lasso (p = 1). Since Lasso is similar in spirit to the “simplex”-type traditional constraint
in the synthetic control literature, we propose Q = 1 as a rule of thumb.

• Ridge (p = 2). It is well known that the Ridge prediction problem can be equivalently
formulated as an unconstrained penalized optimization problem and as a constrained op-
timization problem. More precisely, assuming C is not used and M = 1 for simplicity, the
two Ridge-type problems are

ŵ := arg min
w∈RJ

(A − Bw)⊤V(A − Bw) + λ||w||22,

where λ ≥ 0 is a shrinkage parameter, and

ŵ := arg min
w∈RJ , ||w||22≤Q2

(A − Bw)⊤V(A − Bw),

where Q ≥ 0 is the (explicit) size of the constraint on the norm of w. Under the assumption
of Gaussian errors, a risk-minimizing choice (Hoerl, Kannard, and Baldwin 1975) of the
standard shrinkage tuning parameter is

λ = Jσ̂2
OLS/||ŵOLS||22,

where σ̂2
OLS and ŵOLS are estimators of the variance of the pseudo-true residual u and the

coefficients w0 based on least squares regression, respectively.

12 scpi: Synthetic Control

Since the two optimization problems above are equivalent, there exists a one-to-one corre-
spondence between λ and Q. For example, assuming the columns of B are orthonormal,
the closed-form solution for the Ridge estimator is ŵ = (I + λI)−1ŵOLS, and it follows that
if the constraint on the ℓ2-norm is binding, then Q = ||ŵ||2 = ||ŵOLS||2/(1 + λ).

However, if J > T0, ŵOLS does not exist, hence we cannot rely on the approach suggested
above. Indeed, the proposed mapping between λ and Q is ill-defined and we are unable to
estimate λ. In this case, we first make the design low-dimensional by performing variable
selection on B with Lasso. Once we select the columns of B whose Lasso coefficient is
non-zero, we choose λ according to the rule of thumb described above.

If more than one feature is specified (M > 1), we compute the size of the constraint Ql for
each feature l = 1, . . . , M and then select Q as the tightest constraint to favor shrinkage
of w, that is Q := minl=1,...,M Ql.

Missing data

In case of missing values, we adopt different strategies depending on which units have missing
entries and when these occur.

• Missing pre-treatment data. We compute ŵ without the periods for which there is at
least a missing entry for either the treated unit or one of the donors.

• Missing post-treatment donor data. Suppose that the ith donor has a missing entry in
one of the M features in the post-treatment period T̃ ; this implies that the predictor
vector p

T̃
has a missing entry, and thus the synthetic unit and the associated prediction

intervals are not available.

• Missing post-treatment treated data. When there is missing data for the treated unit
after the treatment, the treatment effect τT is unavailable. However, prediction intervals
for the synthetic point prediction of the counterfactual outcome, Y1t(0) for t > T0, can
still be computed in the usual way because they do not rely on the availability of such
data points.

4. Uncertainty quantification
Following Cattaneo, Feng, and Titiunik (2021) and Cattaneo, Feng, Palomba, and Titiunik
(2025), we view the quantity of interest τT within the synthetic control framework as a random
variable, and hence we refrain from calling it a parameter. Building an analogy with the
concept of estimand (or parameter of interest), we refer to τT as a predictand. Consequently,
we prefer to call τ̂T = Y1T (1)− Ŷ1T (0) based on (3) a prediction of τT rather than an estimator
of it, and our goal is to characterize the uncertainty of τ̂T by building prediction intervals
rather than confidence intervals. In practice, it is appealing to construct prediction intervals
that are valid conditional on a set of observables. We let H be an information set generated
by all features of control units and covariates used in the synthetic control construction,
i.e., B, C, xT , and gT .

Journal of Statistical Software 13

We first decompose the potential outcome of the treated unit based on w0 and r0 introduced
in (2):

Y1T (0) ≡ x⊤
T w0 + g⊤

T r0 + eT = p⊤
T β0 + eT , T > T0, (4)

where eT is defined by construction. In our analysis, w0 and r0 are assumed to be (possibly)
random quantities around which ŵ and r̂ are concentrating in probability, respectively. Then,
the distance between the predicted treatment effect on the treated and the target population
one is

τ̂T − τT = Y1T (0) − Ŷ1T (0) = eT − p⊤
T (β̂ − β0). (5)

where eT is the out-of-sample error coming from misspecification along with any additional
noise occurring at the post-treatment period T > T0, and the term p⊤

T (β̂ − β0) is the in-
sample error coming from the construction of the synthetic control weights. Our goal is to
find probability bounds on the two terms separately to give uncertainty quantification: for
some pre-specified levels α1, α2 ∈ (0, 1), with high probability over H ,

P
[
M1,L ≤ p⊤

T (β̂ − β0) ≤ M1,U
∣∣ H

]
≥ 1 − α1 and P

[
M2,L ≤ eT ≤ M2,U

∣∣ H
]

≥ 1 − α2.

It follows that these probability bounds can be combined to construct a prediction interval
for τT with conditional coverage at least 1 − α1 − α2: with high probability over H ,

P
[
τ̂T + M1,L − M2,U ≤ τT ≤ τ̂T + M1,U − M2,L

∣∣H]
≥ 1 − α1 − α2.

4.1. In-sample error

Cattaneo, Feng, and Titiunik (2021) provide a principled simulation-based method for quan-
tifying the in-sample uncertainty coming from p⊤

T (β̂ − β0). Let Z = (B, C) and D be a
non-negative diagonal (scaling) matrix of size d, possibly depending on the pre-treatment
sample size T0. Since β̂ solves (1), δ̂ := D(β̂ − β0) is the optimizer of the centered criterion
function:

δ̂ = arg min
δ∈∆

{
δ⊤Q̂δ − 2γ̂⊤δ

}
,

where Q̂ = D−1Z⊤VZD−1, γ̂⊤ = u⊤VZD−1, and ∆ = {h ∈ Rd : h = D(β − β0), β ∈
W × R}. Recall that the information set conditional on which our prediction intervals are
constructed contains B and C. Thus, Q̂ can be taken as fixed, and we need to characterize
the uncertainty of γ̂.
We construct a simulation-based criterion function accordingly:

ℓ⋆(δ) = δ⊤Q̂δ − 2(G⋆)⊤δ, G⋆ ∼ N(0, Σ̂), (6)

where Σ̂ is some estimate of Σ = VAR[γ̂ | H] and N(0, Σ̂) represents the normal distribution
with mean 0 and variance-covariance matrix Σ̂. In Section 4.3 we give an explicit expression
for the estimator Σ̂ in Equation 8. In practice, the criterion function ℓ⋆(·) can be simulated
by simply drawing normal random vectors G⋆.
Since the original constraint set ∆ is infeasible, we need to construct a constraint set ∆⋆ used
in simulation that is close to ∆. Specifically, define the distance between a point a ∈ Rd and
a set Λ ⊆ Rd by

dist(a, Λ) = inf
λ∈Λ

||a − λ||,

14 scpi: Synthetic Control

where ||·|| is a generic ℓp vector norm on Rd with p ≥ 1 (e.g., Euclidean norm or ℓ1 norm).
We require

dist(a, ∆⋆) ≪ ||a||, ∀ a ∈ ∆ ∩ B(0, ε), (7)

where B(0, ε) is an ε-neighborhood around zero for some ε > 0. In words, every point in the
infeasible constraint set ∆ has to be sufficiently close to the feasible constraint set used in
simulation. We discuss below a principled strategy for constructing ∆⋆, which allows for both
linear and non-linear constraints in the feasibility set. Section 4.3 provides details on how ∆⋆

is constructed and implemented in the scpi package.
Given the feasible criterion function ℓ⋆(·) and constraint set ∆⋆, we let

M1,L := (α1/2)-quantile of inf
{

p⊤
T D−1δ : δ ∈ ∆⋆, ℓ⋆(δ) ≤ 0

}
, and

M1,U := (1 − α1/2)-quantile of sup
{

p⊤
T D−1δ : δ ∈ ∆⋆, ℓ⋆(δ) ≤ 0

}
,

conditional on the data. Under mild regularity conditions, for a large class of synthetic control
predictands (1), with high probability over H ,

P
[
M1,L ≤ p⊤

T (β̂ − β0) ≤ M1,U
∣∣ H

]
≥ 1 − α1,

up to some small loss of the (conditional) coverage probability. Importantly, this conclusion
holds whether the data are stationary or non-stationary and whether the model is correctly
specified (i.e., E[u | H] = 0) or not. If the constraints imposed are non-linear, an additional
adjustment to this bound may be needed to ensure the desired coverage.

4.2. Out-of-sample error

The unobserved random variable eT in (4) is a single error term in period T , which we
interpret as the error from out-of-sample prediction, conditional on H . Naturally, in order
to have a proper bound on eT , it is necessary to determine certain features of its conditional
distribution FeT (e) = P[eT ≤ e | H]. In this section, we outline principled but agnostic
approaches to quantify the uncertainty introduced by the post-treatment unobserved shock
eT . Since formalizing the validity of our methods usually requires strong assumptions, we
also recommend a generic sensitivity analysis to incorporate out-of-sample uncertainty into
the prediction intervals. See Section 4.5 and Section 5, in particular Figure 3 with the
corresponding snippet of R code, for further clarifications on how to carry out sensitivity
analysis on eT .

• Approach 1: Non-Asymptotic bounds. The starting point is a non-asymptotic prob-
ability bound on eT via concentration inequalities. For example, suppose that eT is sub-
Gaussian conditional on H , i.e., there exists some σH > 0 such that E[exp(λ(eT − E[eT |
H])) | H] ≤ exp(σ2

H λ2/2) a.s. for all λ ∈ R. Then, we can take

M2,L := E[eT | H] −
√

2σ2
H log(2/α2) and M2,U := E[eT | H] +

√
2σ2

H log(2/α2).

In practice, the conditional mean E[eT | H] and the sub-Gaussian parameter σH can be
parameterized and/or estimated using the pre-treatment residuals.

Journal of Statistical Software 15

• Approach 2: Location-scale model. Suppose that eT = E[eT | H] + (VAR[eT |
H])1/2εT with εT statistically independent of H . This setting imposes restrictions on the
distribution of eT | H , but allows for a much simpler tabulation strategy. Specifically, we
can set the lower bound and upper bound on eT as follows:

M2,L = E[eT | H] + (VAR[eT | H])1/2cε(α2/2) and
M2,U = E[eT | H] + (VAR[eT | H])1/2cε(1 − α2/2),

where cε(α2/2) and cε(1 − α2/2) are α2/2 and (1 − α2/2) quantiles of εT , respectively.
In practice, E[eT | H] and VAR[eT | H] can be parametrized and estimated using the
pre-intervention residuals, or perhaps tabulated using auxiliary information. Once such
estimates are available, the appropriate quantiles can be easily obtained using the stan-
dardized (estimated) residuals.

• Approach 3: Quantile regression. Another strategy to bound eT is to determine the
α2/2 and (1 − α2/2) conditional quantiles of eT | H , that is,

M2,L := (α2/2)-quantile of eT | H and M2,U := (1 − α2/2)-quantile of eT | H .

Consequently, we can employ quantile regression methods to estimate those quantities
using pre-treatment data.

Using any of the above methods, we have the following probability bound on eT :

P
[
M2,L ≤ eT ≤ M2,U

∣∣ H
]

≥ 1 − α2.

4.3. Implementation

We now discuss the implementation details. The function scpi(), through various options,
allows the user to specify different approaches to quantify in-sample and out-of-sample uncer-
tainty based on the methods described above. Most importantly, scpi() permits modelling
separately the in-sample error p⊤

T (β̂−β0) and the out-of-sample error eT . In addition, the user
can provide bounds on them manually with the options w.bounds and e.bounds, respectively,
which can be useful for sensitivity analysis in empirical applications.

Modelling in-sample uncertainty

In-sample uncertainty stems from the prediction of p⊤
T (β̂ −β0), and its quantification reduces

to determining M1,L and M1,U. We first review the methodological proposals for constructing
the constraint set ∆⋆ used in simulation discussed in Cattaneo, Feng, Palomba, and Titiunik
(2025), and then present the main procedure for constructing bounds on the in-sample error.

Constructing ∆⋆. Our in-sample uncertainty quantification requires the centered and scaled
constraint feasibility set ∆ to be locally identical to (or, at least, well approximated by) the
constraint set ∆⋆ used in simulation, in the sense of (7). Suppose that

W × R =
{

β ∈ Rd : m=(β) = 0, m≤(β) ≤ 0
}

,

16 scpi: Synthetic Control

where m=(·) ∈ Rd= and m≤(·) ∈ Rd≤ and denote the jth constraint in m≤(·) as m≤,j(·).
Given tuning parameters ϱj > 0, j = 1, · · · , d≤, let A be the set of indices for the inequality
constraints such that m≤,j(β̂) > −ϱj . Then, we construct ∆⋆ as

∆⋆ =
{

D(β − β̂) : m=(β) = 0, m≤,j(β) ≤ (m≤,j(β̂) + κj)1(j ∈ A), j = 1, . . . , d≤
}

,

for
κℓ = 1

2smax
(∂

∂β∂β′ m≤,ℓ(β̂)
)

× ϱ2,

where smax(A) denotes the maximum singular values of a matrix A. We estimate ϱ according
to the following formula if M = 1:

ϱ =
√

d0 log(d) log(T0) max1≤j≤J0 σ̂bj
σ̂u√

T0 min1≤j≤J0 σ̂2
bj

,

where σ̂u and σ̂bj
are the estimated (unconditional) standard deviations of, respectively, the

pseudo-true residual u and the feature of the jth donor unit Bj,1, and d0 denotes the number
of nonzeros in β̂. In the case of multiple features (M > 1), the package employs the same
construction above after stacking the data. In practice, we also need to choose possibly
heterogeneous parameters ϱj , j = 1, . . . , d≤, for different inequality constraints. Our proposed
choice of ϱj is

ϱj :=
∣∣∣∣∣∣ ∂

∂β
m≤,j(β̂)

∣∣∣∣∣∣
2

× ϱ, j = 1, . . . , d≤,

for some parameter ϱ where ||·||2 denotes the ℓ2-norm. More details on the choice of the
regularization parameters ϱ, ϱl, κl, l = 1, . . . , d≤ can be found in Section 6 of Cattaneo, Feng,
Palomba, and Titiunik (2025).

Degrees-of-Freedom Correction. Our uncertainty quantification strategy requires an estimator
of the conditional variance VAR[u | H], which may rely on the effective degrees of freedom,
df, of the synthetic control method. In general, there exists no exact correspondence between
the degrees of freedom and the number of parameters in a fitting model (Ye 1998). Therefore,
the estimated degrees of freedom, d̂f, are defined according to the chosen constraint sets for
β underlying the estimation procedure in (1):

• OLS. d̂f = J + KM .

• Lasso. Following Zou, Hastie, and Tibshirani (2007), an unbiased and consistent estimator
of df is d̂f =

∑J
j=1 1(ŵj > 0) + KM where ŵj is the jth element of ŵ.

• Simplex. Following the discussion for Lasso, d̂f =
∑J

j=1 1(ŵj > 0) − 1 + KM .

• Ridge. Let s1 ≥ s2 ≥ · · · ≥ sJ ≥ 0 be singular values of B and λ be the complexity
parameter of the corresponding Lagrangian Ridge problem, which satisfies λŵ = B⊤(A −
Bŵ). Then, following Friedman, Hastie, and Tibshirani (2001), d̂f =

∑J
j=1

s2
j

s2
j +λ

+ KM .

Main Procedure. Given the constraint set ∆⋆, the main procedure for computing the upper
and lower bounds on the in-sample error is as follows:

Journal of Statistical Software 17

Step 1. Estimation of conditional moments of u. To estimate Σ and to simulate the criterion
function (6) we need an estimate of VAR[γ̂ | H] which, in turn, depends on the
conditional moments of u. To estimate such moments, the user needs to specify three
things:

i) whether the model is misspecified or not, via the option u.missp.
ii) how to model u, via the options u.order, u.lags, and u.design.
iii) an estimator of VAR[u | H], via the option u.sigma.

Given the constructed weights ŵ = (ŵ2, · · · , ŵJ+1)⊤, define regularized weights
ŵ⋆ = (ŵ⋆

2, · · · , ŵ⋆
J+1)⊤ with ŵ⋆

j = ŵj1(ŵj > ϱ) for the tuning parameter ϱ spec-
ified previously. Let B⋆ = diag(B⋆

1, B⋆
2, . . . , B⋆

M), where B⋆
l denotes the matrix

composed of the columns of Bl with non-zero regularized weight ŵ⋆
j only. When

cointegrated.data in scdata() is set to be TRUE, rather than the columns of Bl,
we take the first difference of the columns of Bl. If the user inputs u.missp = FALSE,
then it is assumed that E[u | H] = 0, whereas if u.missp = TRUE (default), then
E[u | H] needs to be estimated.
The unknown conditional expectation E[u | H] is estimated using the fitted values of
a flexible linear-in-parameters regression of û = A−Bŵ−Cr̂ on a design matrix Du,
which can be provided directly with the option u.design or by specifying the lags of
B⋆ (u.lags) and/or the order of the fully interacted polynomial in B⋆ (u.order).
For example, if the user specifies u.lags = 1 and u.order = 1, then the design
matrix is Du = [B⋆ B⋆

−1 C], where B⋆
−1 indicates the first lag of B⋆. If, instead,

u.order = 0 and u.lags = 0 are specified, then Ê[u | H] = u ⊗ ιT0 , where u =
(u1, u2, . . . , uM)⊤ with ul = T −1

0
∑T0

t=1 ût,l, ιν is a ν × 1 vector of ones, and ⊗ denotes
the Kronecker product.
The conditional variance of u is estimated as

V̂AR[u | H] = diag
(
vc1(û1,1 − Ê[u1,1 | H])2, · · · , vcT0·M (ûT0,M − Ê[uT0,M | H])2

)
where vci, i = 1, · · · , T0 · M is a sequence of variance-correction constants, which
can be chosen among the well-known family of heteroskedasticity-robust variance-
covariance estimators through the option u.sigma. In particular, the package cur-
rently allows for five choices:

vc(0)
i = 1, vc(1)

i = T0 · M

T0 · M − df , vc(2)
i = 1

1 − Lii
,

vc(3)
i = 1

(1 − Lii)2 , vc(4)
i = 1

(1 − Lii)δi

with Lii being the i-th diagonal entry of the leverage matrix L := Z(Z⊤VZ)−1Z⊤V,
δi = min{4, T0 · M · Pii/df}, and df is a degrees-of-freedom correction factor, whose
estimation has been explained before. For a discussion of these different estimators,
we refer the reader to MacKinnon (2013) and references therein.

Step 2. Estimation of Σ. The estimator of Σ is

Σ̂ = (Z⊤V)V̂AR[u | H](VZ). (8)

18 scpi: Synthetic Control

Step 3. Simulation. The criterion function ℓ⋆(δ) in (6) is simulated by drawing i.i.d. random
vectors from the Gaussian distribution N(0, Σ̂), conditional on the data.

Step 4. Optimization. Let ℓ⋆
(s)(δ) denote the criterion function corresponding to the s-th draw

from N(0, Σ̂). For each draw s, we solve the following constrained problems:

l(s) := inf
δ∈∆⋆, ℓ⋆

(s)(δ)≤0
p⊤

T D−1δ and u(s) := sup
δ∈∆⋆, ℓ⋆

(s)(δ)≤0
p⊤

T D−1δ, (9)

where ∆⋆ is constructed as explained previously.

Step 5. Estimation of M1,L and M1,U. Step 4 is repeated S times, where S can be specified
with the option sims. Then, M1,L is the (α1/2)-quantile of {l(s)}S

s=1 and M1,U is
the (1 − α1/2)-quantile of {u(s)}S

s=1. The level of α1 can be chosen with the option
u.alpha.

Execution Speed and Parallelization. Steps 3 and 4 of the procedure above are the most com-
putationally intensive and we optimize them in two ways. First, to solve the optimization
problem in (9), scpi relies on ECOSolveR (Fu and Narasimhan 2023), an R package that
provides an interface to ECOS, an efficient solver for conic problems (Domahidi, Chu, and
Boyd 2013; Fu, Narasimhan, and Boyd 2020). See the supplemental appendix of Cattaneo,
Feng, Palomba, and Titiunik (2025) for more details on how to cast the different constrained
SC methods into conic optimization problems. To give the reader a sense of the speed im-
provement, Table 4 compares the execution speed of the conic solver we rely on (first column)
with other two popular optimizers in R: nloptr (Ypma and Johnson 2024) and CVXR (Fu,
Narasimhan, and Boyd 2020). nloptr is an R interface to NLopt, a free/open-source library for
nonlinear optimization. Similarly, CVXR is an R package that provides a convex modelling
language and interface to solvers like ECOS. A nice feature of CVXR is that it analyzes the
optimization problem given as input, checks whether this problem is (disciplined) convex (so
called, DCP check), and then casts it in the form required by the particular solver that gets
called (e.g., conic form). This extra step of checking the nature of the problem and rewriting
it might be time-consuming. However, if one knows that the problem is convex, the DCP
check can be turned off. In Table 4 we report the performance of CVXR both when the DCP
check is on and when it is turned off.
The underlying optimization problem is the minimization problem in (9), where W is a
simplex-type constraint and J, KM, and M are chosen to replicate the size of the empirical
application in Section 5. We evaluate the performance of each package through the R function
Sys.time(). The first row of the table reports the median computation time of each opti-
mizer, whereas the second row shows the inter-quartile range. On the one hand, using a conic
solver in place of a solver for more generic optimization programs (like nloptr) makes our
software 2.5 times faster. On the other hand, our software is tailored to rewrite the synthetic
control problem as a conic problem. This gives a 100-fold gain in speed when compared to
CVXR when the DCP check is on and a 1.5-fold gain when the DCP check is switched off
and the data is prepared beforehand.
Moreover, scpi can be sped up further by efficient parallelization of the tasks performed via
base R functions which assign different simulations to different cores. If Ncores cores are used,

Journal of Statistical Software 19

scpi CVXR CVXR nloptr
DCP on DCP off

Median 0.723 99.935 1.060 1.767
IQR [0.715, 0.732] [98.396, 100.876] [1.042, 1.067] [1.748, 1.810]

Table 4: Speed comparison across optimizers (units: milliseconds), 100 simulations.

the final execution time would be approximately Texec/Ncores, where Texec is the execution time
when a single core is used.
A recently released alternative optimization package is Clarabel (Narasimhan, Goulart, and
Chen 2024), which provides a new and versatile interior point solver for conic programs.
While beyond the scope of this paper, we plan to investigate the performance of this package
in future work.

Modelling out-of-sample uncertainty

To quantify the uncertainty coming from eT , we need to impose some probabilistic structure
that allows us to model the distribution P[eT ≤ e | H] and, ultimately, estimate M2,L and
M2,U. We discussed three different alternative approaches: (i) non-asymptotic bounds; (ii)
location-scale model; and (iii) quantile regression. The user can choose the preferred way of
modeling eT | H by setting the option e.method to either "gaussian", "ls", or "qreg".
The user can also choose the information used to estimate (conditional) moments or quantiles
of eT | H . Practically, we allow the user to specify a design matrix De that is then used
to run the appropriate regressions depending on the approach requested. By default, we set
De = [B⋆

1 C1]. Alternatively, the matrix De can be provided directly through the option
e.design or by specifying the lags of B⋆

1 (e.lags) and/or the order of the fully interacted
polynomial in B⋆

1 (e.order). For example, if the user specifies e.lags = 0 and e.order = 2,
then De contains B⋆

1, C1, and all the unique second-order terms generated by the interaction
of the columns of B⋆

1. If instead e.order = 0 and e.lags = 0 are set, then Ê[eT | H] and
V̂[eT | H] are estimated using the sample average and the sample variance of eT using the
pre-intervention data. Recall that if the option cointegrated.data is set to TRUE, B⋆

1 is
formed using the first differences of the columns in B1. Finally, the user can specify α2 with
the option e.alpha.

4.4. Simultaneous prediction intervals

Up to this point, we focused on prediction intervals that possess high coverage for the individ-
ual treatment effect in each period. However, it may be desirable to have prediction intervals
that have high simultaneous coverage for several periods, usually known as simultaneous pre-
diction intervals in the literature. In other words, our final goal is to construct a sequence of
intervals {It : T0 + 1 ≤ t ≤ T0 + L} for some 1 ≤ L ≤ T1 such that with high probability over
H ,

P
[
τt ∈ It, for all T0 + 1 ≤ t ≤ T0 + L

∣∣ H]
≥ 1 − α1 − α2.

To construct such intervals, we need to generalize the procedures described above to quantify
the in-sample error (Section 4.1) and the out-of-sample error (Section 4.2).

20 scpi: Synthetic Control

With regard to the in-sample uncertainty, we handle two separate cases. On the one hand, if
the constraints in ∆ are linear (e.g., simplex or lasso), then

M1,L := (α1/2)-quantile of inf
{

p⊤
t D−1δ : δ ∈ ∆⋆, ℓ⋆(δ) ≤ 0, T0 + 1 ≤ t ≤ T0 + L

}
and

M1,U := (1 − α1/2)-quantile of sup
{

p⊤
t D−1δ : δ ∈ ∆⋆, ℓ⋆(δ) ≤ 0, T0 + 1 ≤ t ≤ T0 + L

}
,

which guarantees that with high probability over H

P
[
M1,L ≤ p⊤

t (β0 − β̂) ≤ M1,U, for all T0 + 1 ≤ t ≤ T0 + L
∣∣ H]

≥ 1 − α1.

With regard to the out-of-sample uncertainty, our proposed strategy is a generalization of
“Approach 1” in Section 4.2: find M2,L,t and M2,U,t such that with high probability over H ,

P
[
M2,L,t ≤ et ≤ M2,U,t, for all T0 + 1 ≤ t ≤ T0 + L

∣∣ H]
≥ 1 − α2.

Suppose that each et, T0 + 1 ≤ t ≤ T0 + L, is sub-Gaussian conditional on H (not necessarily
independent over t) with sub-Gaussian parameters σH ,t ≤ σH for some σH . Then, we can
take

M2,L,t := E[et|H] −
√

2σ2
H log(2L/α2) and M2,U,t := E[et|H] +

√
2σ2

H log(2L/α2).

We can see that, compared to what we had for “Approach 1”, there is an extra term,
√

log L,
which makes the simultaneous prediction intervals longer. The command scpi automatically
computes simultaneous prediction intervals. To plot them, the user needs to specify the option
joint = TRUE in the scplot command.

4.5. Sensitivity analysis

While the three approaches for out-of-sample uncertainty quantification described in Sec-
tion 4.2 are simple and intuitive, their validity requires potentially strong assumptions on the
underlying data generating process that links the pre-treatment and post-treatment data.
Such assumptions are difficult to avoid because the ultimate goal is to learn about the
statistical uncertainty introduced by a single unobserved random variable after the treat-
ment/intervention is deployed, that is, eT | H for some T > T0. Without additional data
availability, or specific modelling assumptions allowing for transferring information from the
pre-treatment period to the post-treatment period, it is difficult to formally construct M2,L
and M2,U using data-driven methods.
We suggest approaching the out-of-sample uncertainty quantification as a principled sensitiv-
ity analysis, using the approaches above as a starting point. Given the formal and detailed
in-sample uncertainty quantification described previously, it is natural to progressively en-
large the final prediction intervals by adding additional out-of-sample uncertainty to ask the
question: how large does the additional out-of-sample uncertainty contribution coming from
eT | H need to be in order to render the treatment effect τT statistically insignificant? Using
the approaches above, or similar ones, it is possible to construct natural initial benchmarks.
For instance, to implement Approach 1, one can use the pre-treatment outcomes or synthetic
control residuals to obtain a “reasonable” benchmark estimate of the sub-Gaussian parameter
σH and then progressively enlarge or shrink this parameter to check the robustness of the

Journal of Statistical Software 21

conclusion. Alternatively, in specific applications, natural levels of uncertainty for the out-
comes of interest could be available, and hence used to tabulate the additional out-of-sample
uncertainty. We illustrate this approach in Section 5.

5. Empirical illustration
We showcase the features of the package scpi using real data. For comparability purposes, we
employ the canonical dataset in the synthetic control literature on the economic consequences
of the 1990 German reunification (Abadie 2021), and focus on quantifying the causal impact
of the German reunification on GDP per capita in West Germany. Thus, we compare the
post-reunification outcome of West Germany with the outcome of a synthetic control unit
constructed using 16 OECD countries from 1960 to 1990. Using the notation introduced
above, we have T0 = 31 and J = 16. The only feature we exploit to construct the synthetic
control is yearly GDP per capita, and we add a constant term for covariate adjustment. Thus
M = 1 and K = 1, and R = R. We explore the effect of the reunification from 1991 to 2003,
hence T1 = 13. Finally, we treat the time series for West Germany and those countries in
the donor pool as a cointegrating system. Given this information, the command scdata()
prepares all the matrices needed in the synthetic control framework described above (A, B,
C and P), and returns an object that must be used as input in either scest() to predict
Y1T (0), T > T0, or scpi() to conduct inference on τT , T > T0.
We first call scdata() to transform any data frame into an object of class ‘scpi_data’.

R> data <- scpi_germany
R> id.var <- "country"
R> time.var <- "year"
R> period.pre <- (1960:1990)
R> period.post <- (1991:2003)
R> unit.tr <- "West Germany"
R> unit.co <- setdiff(unique(data$country), unit.tr)
R> outcome.var <- "gdp"
R> constant <- TRUE
R> cointegrated.data <- TRUE
R> df <- scdata(df = data, id.var = id.var, time.var = time.var,
+ outcome.var = outcome.var, period.pre = period.pre,
+ period.post = period.post, unit.tr = unit.tr, unit.co = unit.co,
+ constant = constant, cointegrated.data = cointegrated.data)

The function scdata() has the following options: df inputs the data; id.var specifies the
name of the variable containing unit identifiers; time.var declares the name of the variable
denoting the time periods; period.pre and period.post set the pre-treatment and post-
treatment periods, respectively; unit.tr and unit.co declare the treated unit and donor
units, respectively; outcome.var specifies the name of the outcome variable; constant is a
logical variable used to include a constant term; cointegrated.data is a logical variable used
to take cointegration into account.
After having prepared the data, the next step involves choosing the desired constraint set W
to construct the vector of weights w. We consider the canonical synthetic control method

22 scpi: Synthetic Control

and thus search for optimal weights in W = {w ∈ RJ
+ : ||w||1 = 1}. This constraint set is

the default in scest() and, consequently, in scpi(), as the latter internally calls the former
to construct w. The snippet below illustrates how to call scest() and reports the results
displayed in the console with the summary() method.

R> res.est <- scest(data = df, w.constr = list(name = "simplex"))
R> summary(res.est)

Synthetic Control Estimation - Setup

Constraint Type: simplex
Constraint Size (Q): 1
Treated Unit: West Germany
Size of the donor pool: 16
Features: 1
Pre-treatment period: 1960-1990
Pre-treatment periods used in estimation: 31
Covariates used for adjustment: 1

Synthetic Control Estimation - Results

Active donors: 6

Coefficients:
Weights

Australia 0.000
Austria 0.441
Belgium 0.000
Denmark 0.000
France 0.000
Greece 0.000
Italy 0.177
Japan 0.013
Netherlands 0.059
New Zealand 0.000
Norway 0.000
Portugal 0.000
Spain 0.000
Switzerland 0.036
UK 0.000
USA 0.274

Covariates
0.constant 0.158

The next step is uncertainty quantification using scpi(). In this case, we quantify the in-
sample and out-of-sample uncertainty the same way, using B and C as the conditioning set
in both cases. To do so, it suffices to set the order of the polynomial in B to 1 (u.order <-

Journal of Statistical Software 23

1 and e.order <- 1) and not include lags (u.lags <- 0 and e.lags <- 0). Furthermore,
by specifying the option u.miss <- TRUE, we take into account that the conditional mean of
u might differ from 0. This option, together with u.sigma <- "HC1", specifies the following
estimator of VAR[u | H]:

V̂AR[u | H] = diag
(
vc(1)

1 (û1 − Ê[u1 | H])2, · · · , vc(1)
T0

(ûT0 − Ê[uT0 | H])2
)
.

Finally, by selecting e.method <- "gaussian", we perform out-of-sample uncertainty quan-
tification treating eT as sub-Gaussian conditional on B and C. As a last step, we visualize
the constructed synthetic control and compare it with the observed time series for the treated
unit, taking advantage of the function scplot().

R> sims <- 1000
R> u.order <- 1
R> u.lags <- 0
R> u.sigma <- "HC1"
R> u.missp <- TRUE
R> e.order <- 1
R> e.lags <- 0
R> e.method <- "gaussian"
R> cores <- 1
R> set.seed(8894)
R> res.pi <- scpi(data = df, sims = sims, e.method = e.method,
+ e.order = e.order, e.lags = e.lags, u.order = u.order,
+ u.lags = u.lags, u.sigma = u.sigma,
+ u.missp = u.missp, cores = cores, w.constr = list(name = "simplex"))
R> plot <- plot <- scplot(result = res.pi, plot.range = (1960:2003),
+ label.xy = list(x.lab = "Year",
+ y.lab = "GDP per capita (thousand US dollars)"),
+ x.ticks = c(1960, 1970, 1980, 1990, 2000, 2003), e.out = TRUE)
R> plot$plot_out + ggtitle("")

Figure 1 displays the plot resulting from the scplot call. The black line shows the level
of the outcome for the treated unit, Y1t(1), t = 1963, . . . , 2003, whilst the blue line shows
the level of the outcome for the synthetic control, Ŷ1t(0), t = 1963, . . . , 2003. The blue bars
report 90% prediction intervals for Y1t(0). In-sample uncertainty is quantified by means of
1000 simulations of (9), whereas out-of-sample uncertainty is quantified through sub-Gaussian
bounds. The vertical bars are 90% prediction intervals, where the non-coverage error rate
is halved between the out-of-sample and the in-sample uncertainty quantification, i.e., α1 =
α2 = 0.05.
We also conduct the same exercise using different choices of W (see Table 2). In particular,
we construct weights and compute prediction intervals using four other specifications: (i) a
lasso-type constraint (Figure 2a), (ii) a ridge-type constraint (Figure 2b), (iii) no constraint
(Figure 2c), and (iv) an L1-L2 constraint. In panel (b), Q = 0.906, whereas in panel (d)
Q = 1, Q2 = 0.906.

R> methods <- c("lasso", "ols", "ridge", "L1-L2")
R> for (method in methods) {

24 scpi: Synthetic Control

Figure 1: Treated and synthetic unit using a simplex-type W and 90% prediction intervals,
German reunification example. Note: Dashed vertical line indicates the period when the
treatment (German reunification) occurs.

+ set.seed(8894)
+ res.pi <- scpi(data = df, sims = sims, e.method = e.method,
+ e.order = e.order, e.lags = e.lags, u.order = u.order,
+ u.lags = u.lags, u.sigma = u.sigma,
+ u.missp = u.missp, cores = cores,
+ w.constr = list(name = method))
+ plot <- scplot(result = res.pi, plot.range = (1960:2003),
+ label.xy = list(x.lab = "Year",
+ y.lab = "GDP per capita (thousand US dollars)"),
+ x.ticks = c(1960, 1970, 1980, 1990, 2000, 2003), e.out = TRUE)
+ print(plot$plot_out + ggtitle(""))
+ }

Section 4.5 clarified the need for some additional sensitivity analysis when it comes to out-
of-sample uncertainty quantification. Figure 3 shows the impact of shrinking and enlarging
σ̂H on the prediction intervals for Y1t(0), t = 1997, when we assume that et is sub-Gaussian
conditional on H . The black horizontal line shows the level of the outcome for the treated
unit in 1997, Y1t(1) for t = 1997. The blue bars report 95% prediction intervals for Y1t(0),
t = 1997, that only take into account in-sample uncertainty. The red dashed bars adds the
out-of-sample uncertainty to obtain 90% prediction intervals. As shown in the figure, the
predicted treatment effect τ̂1997 remains different from zero with high probability over H
even doubling σ̂H .

Journal of Statistical Software 25

(a) lasso (b) ridge

(c) least squares (d) L1-L2

Figure 2: Uncertainty quantification for different forms of W using 90% prediction intervals,
German reunification example.
Note: Dashed vertical line indicates the period when the treatment (German reunification)
occurs.

Finally, the package offers the possibility to match the treated unit and the synthetic unit
using multiple features and the possibility to compute simultaneous prediction intervals. If
we want to match West Germany and the synthetic unit not only on GDP per capita but
also on trade openness (M = 2), we can simply modify the object ‘scpi_data’ as follows.

R> df <- scdata(df = data, id.var = id.var, time.var = time.var,
+ outcome.var = outcome.var, period.pre = period.pre,
+ period.post = period.post, unit.tr = unit.tr,
+ features = c("gdp", "trade"), cov.adj = list(c("constant")),
+ cointegrated.data = cointegrated.data, unit.co = unit.co)

To get simultaneous prediction intervals it suffices to add the option joint = TRUE to the
scplot command. Results are reported in Figure 4, where blue shaded areas depict 90%
simultaneous prediction intervals for periods from 1991 to 2004. In panel (c), Q = 0.903,
whereas in panel (e) Q = 1, Q2 = 0.903.

26 scpi: Synthetic Control

Figure 3: Sensitivity analysis on out-of-sample uncertainty with sub-Gaussian bounds, Ger-
man reunification example.
Note: Dashed vertical line indicates the period when the treatment (German reunification)
occurs. The black horizontal line shows the outcome for the treated unit in 1997, Y1,1997(1).
The blue bars report 95% prediction intervals for the counterfactual Y1,1997(0) only taking into
account in-sample uncertainty. The red dashed bars adds out-of-sample uncertainty to obtain
90% prediction intervals.

6. Conclusion

This article introduced the R software package scpi, which implements point estimation/prediction
and inference/uncertainty quantification procedures for synthetic control methods. The pack-
age is also available in the Stata and Python statistical platforms, as described in the appen-
dices. Further information can be found at https://nppackages.github.io/scpi/.

Acknowledgments

We thank Alberto Abadie and Bartolomeo Stellato for many insightful discussions. Cattaneo
and Titiunik gratefully acknowledge financial support from the National Science Foundation
(SES-2019432 and SES-2241575), Cattaneo gratefully acknowledges financial support from
the National Institute of Health (R01 GM072611-16), and Feng gratefully acknowledges fi-
nancial support from the National Natural Science Foundation of China (grants 72203122
and 72133002).

https://nppackages.github.io/scpi/

Journal of Statistical Software 27

(a) simplex (b) lasso

(c) ridge (d) least squares

(e) L1-L2

Figure 4: Uncertainty quantification for different forms of W using 90% prediction intervals,
German reunification example.
Note: Dashed vertical line indicates the period when the treatment (German reunification) oc-
curs. Blue shaded areas depict 90% simultaneous prediction intervals for periods 1991 through
2004. In panel (c), Q = 0.903, in panel (e) Q = 1, Q2 = 0.903.

28 scpi: Synthetic Control

References

Abadie A (2021). “Using Synthetic Controls: Feasibility, Data Requirements, and Method-
ological Aspects.” Journal of Economic Literature, 59(2), 391–425. doi:10.1257/jel.
20191450.

Abadie A, Cattaneo MD (2018). “Econometric Methods for Program Evaluation.” Annual
Review of Economics, 10, 465–503. doi:10.1146/annurev-economics-080217-053402.

Abadie A, Diamond A, Hainmueller J (2010). “Synthetic Control Methods for Comparative
Case Studies: Estimating the Effect of California’s Tobacco Control Program.” Journal
of the American Statistical Association, 105(490), 493–505. doi:10.1198/jasa.2009.
ap08746.

Abadie A, Diamond A, Hainmueller J (2011). “Synth: An R Package for Synthetic Control
Methods in Comparative Case Studies.” Journal of Statistical Software, 42(13), 1–17. doi:
10.18637/jss.v042.i13.

Abadie A, Gardeazabal J (2003). “The Economic Costs of Conflict: A Case Study of
the Basque Country.” American Economic Review, 93(1), 113–132. doi:10.1257/
000282803321455188.

Abadie A, L’Hour J (2021). “A Penalized Synthetic Control Estimator for Disaggregated
Data.” Journal of the American Statistical Association, 116(536), 1817–1834. doi:10.
1080/01621459.2021.1971535.

Amjad M, Shah D, Shen D (2018). “Robust Synthetic Control.” Journal of Machine Learning
Research, 19(1), 802–852. doi:10.1145/3376930.3376966.

Arkhangelsky D, Athey S, Hirshberg DA, Imbens GW, Wager S (2021). “Synthetic Differ-
ence in Differences.” American Economic Review, 111(12), 4088–4118. doi:10.1257/aer.
20190159.

Arkhangelsky D, Athey S, Hirshberg DA, Imbens GW, Wager S (2024). synthdid: Synthetic
Difference in Differences Estimation. R package version 0.0.9, URL synth-inference.
github.io/synthdid.

Barrett P (2018). pgsc: Computes Powell’s Generalized Synthetic Control Estimator. doi:
10.32614/CRAN.package.pgsc. R package version 1.0.0.

Becker M, Klössner S (2024). MSCMT: Multivariate Synthetic Control Method Using Time
Series. doi:10.32614/CRAN.package.MSCMT. R package version 1.4.0.

Ben-Michael E (2024). augsynth: Augmented Synthetic Control Method. R package ver-
sion 0.2.0, URL https://github.com/ebenmichael/augsynth.

Ben-Michael E, Feller A, Rothstein J (2022). “Synthetic Controls With Staggered Adoption.”
Journal of the Royal Statistical Society B, 84(2), 351–381. doi:10.1111/rssb.12448.

Boyd S, Vandenberghe L (2004). Convex Optimization. Cambridge university press.

https://doi.org/10.1257/jel.20191450
https://doi.org/10.1257/jel.20191450
https://doi.org/10.1146/annurev-economics-080217-053402
https://doi.org/10.1198/jasa.2009.ap08746
https://doi.org/10.1198/jasa.2009.ap08746
https://doi.org/10.18637/jss.v042.i13
https://doi.org/10.18637/jss.v042.i13
https://doi.org/10.1257/000282803321455188
https://doi.org/10.1257/000282803321455188
https://doi.org/10.1080/01621459.2021.1971535
https://doi.org/10.1080/01621459.2021.1971535
https://doi.org/10.1145/3376930.3376966
https://doi.org/10.1257/aer.20190159
https://doi.org/10.1257/aer.20190159
synth-inference.github.io/synthdid
synth-inference.github.io/synthdid
https://doi.org/10.32614/CRAN.package.pgsc
https://doi.org/10.32614/CRAN.package.pgsc
https://doi.org/10.32614/CRAN.package.MSCMT
https://github.com/ebenmichael/augsynth
https://doi.org/10.1111/rssb.12448

Journal of Statistical Software 29

Cattaneo MD, Feng Y, Palomba F, Titiunik R (2024a). scpi: Prediction Intervals for Synthetic
Control Methods with Multiple Treated Units and Staggered Adoption. python package
version 3.0.0, URL https://pypi.org/project/scpi-pkg/.

Cattaneo MD, Feng Y, Palomba F, Titiunik R (2024b). scpi: Prediction Intervals for Synthetic
Control Methods with Multiple Treated Units and Staggered Adoption. doi:10.32614/CRAN.
package.scpi. R package version 3.0.0, URL https://CRAN.R-project.org/package=
scpi.

Cattaneo MD, Feng Y, Palomba F, Titiunik R (2024c). scpi: Prediction Intervals for Syn-
thetic Control Methods with Multiple Treated Units and Staggered Adoption. Stata package
version 20250131, URL https://github.com/nppackages/scpi.

Cattaneo MD, Feng Y, Palomba F, Titiunik R (2025). “Uncertainty Quantification in Syn-
thetic Controls With Staggered Treatment Adoption.” arXiv 2210.05026, arXiv.org E-Print
Archive. doi:10.48550/arXiv.2210.05026.

Cattaneo MD, Feng Y, Titiunik R (2021). “Prediction Intervals for Synthetic Control
Methods.” Journal of the American Statistical Association, 116(536), 1865–1880. doi:
10.1080/01621459.2021.1979561.

Cerulli G (2020). NPSYNTH: Stata Module to Implement Nonparametric Synthetic Control
Method. URL https://ideas.repec.org/c/boc/bocode/s458398.html.

Chen Q (2023). SYNTH2: Stata Module to Implement Synthetic Control Method (SCM)
With Placebo Tests, Robustness Test and Visualization. URL https://ideas.repec.org/
c/boc/bocode/s459017.html.

Chernozhukov V, Wüthrich K, Zhu Y (2021). “An Exact and Robust Conformal Inference
Method for Counterfactual and Synthetic Controls.” Journal of the American Statistical
Association, 116(536), 1849–1864. doi:10.1080/01621459.2021.1920957.

Domahidi A, Chu E, Boyd S (2013). “ECOS: An SOCP Solver for Embedded Systems.” In
2013 European Control Conference (ECC), pp. 3071–3076. IEEE.

Dunford E (2023). tidysynth: A Tidy Implementation of the Synthetic Control Method. doi:
10.32614/CRAN.package.tidysynth. R package version 0.2.0.

Engelbrektson O (2021). SyntheticControlMethods: A Python Package for Causal Infer-
ence Using Synthetic Controls. Python package version 1.1.17, URL https://pypi.org/
project/SyntheticControlMethods/.

Ferman B, Pinto C (2021). “Synthetic Controls With Imperfect Pretreatment Fit.” Quanti-
tative Economics, 12(4), 1197–1221. doi:10.3982/qe1596.

Fonseca YR, Masini R, Medeiros MC, Vasconcelos GFR (2017). ArCo: Artificial Counter-
factual Package. doi:10.32614/CRAN.package.ArCo. R package version 0.3-1.

Friedman J, Hastie T, Tibshirani R (2001). The Elements of Statistical Learning. Springer-
Verlag. doi:10.1007/978-0-387-21606-5.

https://pypi.org/project/scpi-pkg/
https://doi.org/10.32614/CRAN.package.scpi
https://doi.org/10.32614/CRAN.package.scpi
https://CRAN.R-project.org/package=scpi
https://CRAN.R-project.org/package=scpi
https://github.com/nppackages/scpi
https://doi.org/10.48550/arXiv.2210.05026
https://doi.org/10.1080/01621459.2021.1979561
https://doi.org/10.1080/01621459.2021.1979561
https://ideas.repec.org/c/boc/bocode/s458398.html
https://ideas.repec.org/c/boc/bocode/s459017.html
https://ideas.repec.org/c/boc/bocode/s459017.html
https://doi.org/10.1080/01621459.2021.1920957
https://doi.org/10.32614/CRAN.package.tidysynth
https://doi.org/10.32614/CRAN.package.tidysynth
https://pypi.org/project/SyntheticControlMethods/
https://pypi.org/project/SyntheticControlMethods/
https://doi.org/10.3982/qe1596
https://doi.org/10.32614/CRAN.package.ArCo
https://doi.org/10.1007/978-0-387-21606-5

30 scpi: Synthetic Control

Fu A, Narasimhan B (2023). ECOSolveR: Embedded Conic Solver in R. doi:10.32614/
CRAN.package.ECOSolveR. R package version 0.5.5.

Fu A, Narasimhan B, Boyd S (2020). “CVXR: An R Package for Disciplined Convex Opti-
mization.” Journal of Statistical Software, 94(14), 1–34. doi:10.18637/jss.v094.i14.

Greathouse J (2022). scul: Stata Module to Implement Regularized Synthetic Control (Using
LASSO) Estimators for Single and Multiple-Treated Unit Settings. URL https://ideas.
repec.org/c/boc/bocode/s459107.html.

Hainmueller J, Diamond A (2023). Synth: Synthetic Control Group Method for Comparative
Case Studies. doi:10.32614/CRAN.package.Synth. R package version 1.1-8.

Hoerl AE, Kannard RW, Baldwin KF (1975). “Ridge Regression: Some Simulations.”
Communications in Statistics-Theory and Methods, 4(2), 105–123. doi:10.1080/
03610927508827232.

Hollingsworth A (2024). scul: Synthetic Control Using Lasso (SCUL). R package ver-
sion 0.2.0.1, URL hollina.github.io/scul.

Hsiao C, Steve Ching H, Ki Wan S (2012). “A Panel Data Approach for Program Evaluation:
Measuring the Benefits of Political and Economic Integration of Hong Kong With Mainland
China.” Journal of Applied Econometrics, 27(5), 705–740. doi:10.1002/jae.1230.

Li KT (2020). “Statistical Inference for Average Treatment Effects Estimated by Synthetic
Control Methods.” Journal of the American Statistical Association, 115(532), 2068–2083.
doi:10.1080/01621459.2019.1686986.

MacKinnon JG (2013). “Thirty Years of Heteroskedasticity-Robust Inference.” In X Chen,
NR Swanson (eds.), Recent Advances and Future Directions in Causality, Prediction, and
Specification Analysis: Essays in Honor of Halbert L. White Jr, pp. 437–461. Springer-
Verlag. doi:10.1007/978-1-4614-1653-1_17.

Masini R, Medeiros MC (2021). “Counterfactual Analysis With Artificial Controls: Inference,
High Dimensions and Nonstationarity.” Journal of the American Statistical Association,
116(536), 1773–1788. doi:10.1080/01621459.2021.1964978.

Muehlbach NS (2021). treebased_synthetic_controls. Python package version 0.1.12, URL
https://pypi.org/project/treebased-synthetic-controls.

Narasimhan B, Goulart P, Chen Y (2024). clarabel: Interior Point Conic Optimization
Solver. doi:10.32614/CRAN.package.clarabel. R package version 0.9.0.1.

R Core Team (2024). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Robbins M, Davenport S (2023). microsynth: Synthetic Control Methods with Micro- And
Meso-Level Data. doi:10.32614/CRAN.package.microsynth. R package version 2.0.44.

Robbins MW, Davenport S (2021). “Microsynth: Synthetic Control Methods for Disag-
gregated and Micro-Level Data in R.” Journal of Statistical Software, 97, 1–31. doi:
10.18637/jss.v097.i02.

https://doi.org/10.32614/CRAN.package.ECOSolveR
https://doi.org/10.32614/CRAN.package.ECOSolveR
https://doi.org/10.18637/jss.v094.i14
https://ideas.repec.org/c/boc/bocode/s459107.html
https://ideas.repec.org/c/boc/bocode/s459107.html
https://doi.org/10.32614/CRAN.package.Synth
https://doi.org/10.1080/03610927508827232
https://doi.org/10.1080/03610927508827232
hollina.github.io/scul
https://doi.org/10.1002/jae.1230
https://doi.org/10.1080/01621459.2019.1686986
https://doi.org/10.1007/978-1-4614-1653-1_17
https://doi.org/10.1080/01621459.2021.1964978
https://pypi.org/project/treebased-synthetic-controls
https://doi.org/10.32614/CRAN.package.clarabel
https://www.R-project.org/
https://doi.org/10.32614/CRAN.package.microsynth
https://doi.org/10.18637/jss.v097.i02
https://doi.org/10.18637/jss.v097.i02

Journal of Statistical Software 31

Shaikh AM, Toulis P (2021). “Randomization Tests in Observational Studies With Staggered
Adoption of Treatment.” Journal of the American Statistical Association, 116(536), 1835–
1848. doi:10.1080/01621459.2021.1974458.

Silva BC, DeWitt M (2024). SCtools: Extensions for Synthetic Controls Analysis. doi:
10.32614/CRAN.package.SCtools. R package version 0.3.3.

StataCorp (2019). Stata Statistical Software: Release 16. StataCorp LLC, College Station,
TX. URL https://www.stata.com/.

van Kesteren EJ, Slaughter I (2024). pensynth: Penalized Synthetic Control Estimation.
doi:10.32614/CRAN.package.pensynth. R package version 0.5.1.

van Rossum G, et al. (2011). Python Programming Language. URL http://www.python.org.

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag. doi:
10.1007/978-0-387-98141-3.

Wiltshire JC (2024). ALLSYNTH: Stata Module to Automate Estimation of (i) Bias-
Corrected Synthetic Control Gaps (“Treatment Effects”). URL https://ideas.repec.
org/c/boc/bocode/s459076.html.

Wuthrich K (2021). scinference: Inference for Synthetic Controls. R package ver-
sion 0.0.0.9000, URL https://github.com/kwuthrich/scinference.

Xu Y, Liu L (2021). gsynth: Generalized Synthetic Control Method. doi:10.32614/CRAN.
package.gsynth. R package version 1.2.1.

Ye J (1998). “On Measuring and Correcting the Effects of Data Mining and Model
Selection.” Journal of the American Statistical Association, 93(441), 120–131. doi:
10.1080/01621459.1998.10474094.

Ypma J, Johnson SG (2024). nloptr: R Interface to NLopt. doi:10.32614/CRAN.package.
nloptr. R package version 2.1.1.

Zou H, Hastie T, Tibshirani R (2007). “On the “Degrees of Freedom” of the Lasso.” Annals
of Statistics, 35(5), 2173–2192. doi:10.1214/009053607000000127.

https://doi.org/10.1080/01621459.2021.1974458
https://doi.org/10.32614/CRAN.package.SCtools
https://doi.org/10.32614/CRAN.package.SCtools
https://www.stata.com/
https://doi.org/10.32614/CRAN.package.pensynth
http://www.python.org
https://doi.org/10.1007/978-0-387-98141-3
https://doi.org/10.1007/978-0-387-98141-3
https://ideas.repec.org/c/boc/bocode/s459076.html
https://ideas.repec.org/c/boc/bocode/s459076.html
https://github.com/kwuthrich/scinference
https://doi.org/10.32614/CRAN.package.gsynth
https://doi.org/10.32614/CRAN.package.gsynth
https://doi.org/10.1080/01621459.1998.10474094
https://doi.org/10.1080/01621459.1998.10474094
https://doi.org/10.32614/CRAN.package.nloptr
https://doi.org/10.32614/CRAN.package.nloptr
https://doi.org/10.1214/009053607000000127

32 scpi: Synthetic Control

A. Python illustration
This appendix section shows how to conduct the same analysis carried out in Section 5 using
the companion Python package. Figure 5 shows the main results. Replication files and data
are available at https://nppackages.github.io/scpi/.

>>> import pandas
>>> import numpy
>>> import os
>>> from warnings import filterwarnings
>>> from plotnine import ggtitle

>>> from scpi_pkg.scdata import scdata
>>> from scpi_pkg.scdataMulti import scdataMulti
>>> from scpi_pkg.scest import scest
>>> from scpi_pkg.scpi import scpi
>>> from scpi_pkg.scplot import scplot
>>> from scpi_pkg.scplotMulti import scplotMulti

>>> filterwarnings("ignore")

>>> data = pandas.read_csv("Data/scpi_germany.csv")

>>> id_var = "country"
>>> outcome_var = "gdp"
>>> time_var = "year"
>>> period_pre = numpy.arange(1960, 1991)
>>> period_post = numpy.arange(1991, 2004)
>>> unit_tr = "West Germany"
>>> unit_co = list(set(data[id_var].to_list()))
>>> unit_co = [cou for cou in unit_co if cou != "West Germany"]
>>> constant = True
>>> cointegrated_data = True

>>> data_prep = scdata(df = data, id_var = id_var, time_var = time_var,
... outcome_var = outcome_var, period_pre = period_pre,
... period_post = period_post, unit_tr = unit_tr,
... unit_co = unit_co, cointegrated_data = cointegrated_data,
... constant = constant)

>>> est_si = scest(data_prep, w_constr = {"name": "simplex"})
>>> print(est_si)

>>> w_constr = {"name": "simplex", "Q": 1}
>>> u_missp = True
>>> u_sigma = "HC1"
>>> u_order = 1

https://nppackages.github.io/scpi/

Journal of Statistical Software 33

>>> u_lags = 0
>>> e_method = "gaussian"
>>> e_order = 1
>>> e_lags = 0
>>> sims = 1000
>>> cores = 1

>>> for mtd in ["simplex", "lasso", "ridge", "L1-L2", "ols"]:
... numpy.random.seed(8894)
... pi_si = scpi(data_prep, sims = sims, w_constr = {"name": mtd},
... u_order = u_order, u_lags = u_lags, e_order = e_order,
... e_lags = e_lags, e_method = e_method, u_missp = u_missp,
... u_sigma = u_sigma, cores = cores)
... plot = scplot(pi_si, x_lab = "Year", e_method = e_method,
... y_lab = "GDP per capita (thousand US dollars)")
... plot + ggtitle("")

>>> data = pandas.read_csv("Data/scpi_germany.csv")

>>> id_var = "country"
>>> outcome_var = "gdp"
>>> time_var = "year"
>>> period_pre = numpy.arange(1960, 1991)
>>> period_post = numpy.arange(1991, 2004)
>>> unit_tr = "West Germany"
>>> unit_co = list(set(data[id_var].to_list()))
>>> unit_co = [cou for cou in unit_co if cou != "West Germany"]
>>> constant = False
>>> cointegrated_data = True
>>> cov_adj = [["constant"], ["constant"]]

>>> data_prep = scdata(df = data, id_var = id_var, time_var = time_var,
... outcome_var = outcome_var, period_pre = period_pre,
... period_post = period_post, unit_tr = unit_tr,
... unit_co = unit_co, cointegrated_data = cointegrated_data,
... constant = constant, features = ["gdp", "trade"],
... cov_adj = cov_adj)

>>> est_si = scest(data_prep, w_constr = {"name": "simplex"})
>>> print(est_si)

>>> w_constr = {"name": "simplex", "Q": 1}
>>> u_missp = True
>>> u_sigma = "HC1"
>>> u_order = 1
>>> u_lags = 0
>>> e_method = "gaussian"

34 scpi: Synthetic Control

>>> e_order = 1
>>> e_lags = 0
>>> sims = 1000
>>> cores = 1

>>> for mtd in ["simplex", "lasso", "ridge", "L1-L2", "ols"]:
... numpy.random.seed(8894)
... pi_si = scpi(data_prep, sims = sims, w_constr = {"name": mtd},
... u_order = u_order, u_lags = u_lags, e_order = e_order,
... e_lags = e_lags, e_method = e_method, u_missp = u_missp,
... u_sigma = u_sigma, cores = cores)
... plot = scplot(pi_si, x_lab = "Year", e_method = e_method,
... y_lab = "GDP per capita (thousand US dollars)")
... plot + ggtitle("")

Journal of Statistical Software 35

Case I : M = 1

(a) simplex (b) lasso

(c) ridge (d) least squares

(e) L1-L2

Figure 5: Uncertainty quantification for different forms of W using 90% prediction intervals,
German reunification example.

36 scpi: Synthetic Control

Case II : M = 2

(a) simplex (b) lasso

(c) ridge (d) least squares

(e) L1-L2

Figure 6: Uncertainty quantification for different forms of W using 90% prediction intervals,
German reunification example.

Journal of Statistical Software 37

B. Stata illustration
This appendix section replicates the analysis conducted in Section 5 for M = 1 using the
companion Stata package. Main results are shown in Figure 7. Replication files and data are
available at https://nppackages.github.io/scpi/.

. use "Data/scpi_germany.dta", clear

. scdata gdp, dfname("python_scdata") id(country) outcome(gdp) ///
> time(year) treatment(status) cointegrated constant
. foreach method in "simplex" "lasso" "ols" "ridge" "L1-L2" {
. scpi, dfname("python_scdata") name(`method') ///
> u_missp sims(1000) e_method(gaussian) ///
> set_seed(8894)
. scplot, uncertainty("gaussian") gphoptions(note("") ///
> xtitle("Year") ///
> ytitle("GPD per capita (thousand US dollars)"))
. }

. scdata gdp trade, dfname("python_scdata") id(country) outcome(gdp) ///
> time(year) treatment(status) cointegrated covadj("constant")
. foreach method in "simplex" "lasso" "ols" "ridge" "L1-L2" {
. scpi, dfname("python_scdata") name(`method') ///
> e_method(gaussian) u_missp sims(1000) ///
> set_seed(8894)
. scplot, uncertainty("gaussian") gphoptions(note("") ///
> xtitle("Year") ///
> ytitle("GPD per capita (thousand US dollars)")) joint
. }

https://nppackages.github.io/scpi/

38 scpi: Synthetic Control

Case I : M = 1

(a) simplex (b) lasso

(c) ridge (d) least squares

(e) L1-L2

Figure 7: Uncertainty quantification for different forms of W using 90% prediction intervals,
German reunification example.

Journal of Statistical Software 39

Case II : M = 2

(a) simplex (b) lasso

(c) ridge (d) least squares

(e) L1-L2

Figure 8: Uncertainty quantification for different forms of W using 90% prediction intervals,
German reunification example.

40 scpi: Synthetic Control

Affiliation:
Matias D. Cattaneo
Department of Operations Research and Financial Engineering
Princeton University
227 Sherrerd Hall
Princeton, New Jersey 08544, United States of America
E-mail: cattaneo@princeton.edu
URL: https://cattaneo.princeton.edu/

Yingjie Feng
School of Economics and Management
Tsinghua University
B628 Lihua Building
Beijing 100084, China
E-mail: fengyj@sem.tsinghua.edu.cn
URL: https://sites.google.com/site/yingjieum/

Filippo Palomba
Department of Economics
Princeton University
20 Washington Rd
Princeton, New Jersey 08544, United States of America
E-mail: fpalomba@princeton.edu

Rocío Titiunik
Department of Politics
Princeton University
001 Fisher Hall
Princeton, New Jersey 08544, United States of America
E-mail: titiunik@princeton.edu
URL: https://scholar.princeton.edu/titiunik

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

MMMMMM YYYY, Volume VV, Issue II Submitted: yyyy-mm-dd
doi:10.18637/jss.v000.i00 Accepted: yyyy-mm-dd

mailto:cattaneo@princeton.edu
https://cattaneo.princeton.edu/
mailto:fengyj@sem.tsinghua.edu.cn
https://sites.google.com/site/yingjieum/
mailto:fpalomba@princeton.edu
mailto:titiunik@princeton.edu
https://scholar.princeton.edu/titiunik
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v000.i00

	Introduction
	Setup
	Extensions

	Synthetic control prediction
	Implementation

	Uncertainty quantification
	In-sample error
	Out-of-sample error
	Implementation
	Simultaneous prediction intervals
	Sensitivity analysis

	Empirical illustration
	Conclusion
	Python illustration
	Stata illustration

