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S.1 Notation

We summarize the notation used throughout the paper in the following table.

Table S.1: Summary of Notation

Quantity Description

τik time-specific unit-specific predictand
τi· time-averaged unit-specific predictand
τQk time-specific unit-averaged predictand
τ·· time-averaged unit-averaged predictand
N set of never-treated units
E set of ever-treated units

W [i] or W constraint set imposed in SC construction
J0 number of never-treated units
J1 number of ever-treated units
Q number of units in Q
Yit real GDP per capita of country i in year t
YN t a vector of outcomes of never-treated (donor) units

uit out-of-sample error in decomposition of Ŷit

ϱ
[i]
ℓ tuning parameter used to check if the ℓ-th constraint is binding

M[i]
γ̂ or Mγ̂ feasible set for SC weights deduced from optimization

M[i]⋆
G or M⋆

G feasible set used for in-sample uncertainty quantification

∆[i] or ∆ centered constraint set
dist(a,A) distance between a point a and a set A, i.e., infλ∈A ∥a− λ∥
Aε ε-enlargement of A, i.e., {a : dist(a,A) ≤ ε}
|A| number of elements in a set A
×i∈SAi Cartesian product of sets Ai’s for i ∈ S
∥ · ∥1, ∥ · ∥2 L1 and L2 vector norms
smin(A), smax(A) minimum and maximum singular values of a matrix A
(vj : j ∈ A) a vector consisting of all vj ’s with j ∈ A
⊗ Kronecker product
subscripts in, out “in-sample”, “out-of-sample”
superscript [i] indicate a quantity is related to a treated unit i
lower bar, upper bar “lower bound”, “upper bound”
⋆ indicate a quantity is related to simulation

S.2 Other Strategies for Uncertainty Quantification

S.2.1 Out-of-Sample Error

In Section 4.2 we discuss the approach for quantifying the out-of-sample uncertainty based on the
non-asymptotic bounds. We briefly describe two strategies below.

• Location-scale model. Suppose that uit = E[uit|H ] + (V[uit|H ])1/2νit with νit statistically inde-
pendent of H . The bounds on uit can now be set to Mout = E[uit|H ]+(V[uit|H ])1/2cν(αout/2)
and Mout = E[uit|H ] + (V[uit|H ])1/2cν(1 − αout/2) where cν(αout/2) and cν(1 − αout/2) are
αout/2 and (1− αout/2) quantiles of νit, respectively, and αout is the desired pre-specified level.

• Quantile regression. We can determine the αout/2 and (1 − αout/2) conditional quantiles of
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uit|H . Consequently, another possibility is to employ quantile regression methods to estimate
those quantities using pre-treatment data.

S.2.2 Simultaneous Prediction Intervals

Section 4.4 constructs prediction intervals with simultaneous coverage. We briefly describe two
other common approaches below.

• Bonferroni-type correction. There is a large literature on Bonferroni corrections that can be used
to construct multiple prediction intervals with simultaneous coverage. For example, consider a
simple correction strategy: for each k = 0, . . . , L, use any strategy described in Section 4.2 or
Section S.2.1 to construct a prediction interval for ui(Ti+k) that has a coverage probability at
least 1 − (αout/(L + 1)). Then, the simultaneous coverage probability of the L + 1 prediction
intervals {Ĩk : 0 ≤ k ≤ L} is at least 1 − αout. Some other more sophisticated corrections are
also available in the literature (see, e.g., Ravishanker et al., 1987). For instance, the second-order
Bonferroni-type bound implies that

P
[
ui(Ti+k) ∈ Ĩk for all 0 ≤ k ≤ L

∣∣H ]
≥ 1−

L∑
k=0

pk +

L−1∑
k=0

pk,k+1, where

pk = P(ui(Ti+k) ∈ Ĩk|H ), pk,k+1 = P(ui(Ti+k) ∈ Ĩk, ui(Ti+k+1) ∈ Ĩk+1|H ).

Then, one can construct the prediction intervals Ĩk’s with corresponding coverage probabilities
pk and pk,k+1 such that 1−

∑L
k=0 pk+

∑L−1
k=0 pk,k+1 ≥ 1−αout. Such bounds are usually sharper,

but their implementation requires the modeling of the dependence of (uit, ui(t+1)) conditional on
H and is computationally more burdensome.

• Scheffé-type intervals. An alternative approach is to construct Scheffé-type simultaneous predic-
tion intervals, though stronger distributional assumptions need to be made. For instance, assume
that (uiTi , · · · , ui(Ti+L))

′ jointly follows a conditional Gaussian distribution with mean zero and
variance ΣH . Then,

(uiTi , · · · , ui(Ti+L))Σ
−1
H (uiTi , · · · , ui(Ti+L))

′ ∼ χ2
L+1,

where χ2
L+1 is χ2 distribution with L + 1 degrees of freedom. The sequence of prediction inter-

vals Ĩk =
[
− σH ,kk

√
χ2
L+1(1− αout), σH ,kk

√
χ2
L+1(1− αout)

]
have the simultaneous coverage

probability at least 1−αout, where σ
2
H ,kk is the k-th diagonal element of ΣH and χ2

L+1(1−αout)

is the (1− αout)-quantile of χ2 distribution with L+ 1 degrees of freedom.

S.2.3 Alternative Bounds for In-sample Error

When the causal predictand of interest depends on treatment effects on multiple treated units,
such as the time-specific unit-averaged predictand τQk, there is an alternative method for in-sample
uncertainty quantification that may yield tighter prediction intervals. It relies on the fact that if the
SC weights β̂[i] for each ever-treated unit i are obtained through a separate optimization process
using data A[i], B[i] and C[i], then, as outlined in Remark 1, a sequence of restrictions must be
obeyed: for each i ∈ E ,

(β̂[i] − β
[i]
0 )′Q̂[i](β̂[i] − β

[i]
0 )− 2(γ̂[i] − γ[i])′(β̂[i] − β

[i]
0 ) ≤ 0, β̂[i] − β

[i]
0 ∈ ∆[i]. (S.2.1)
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Then, analogously to (6.5) in the main text, for any predictand τ defined before, we can set

Min(τ) = (αin/2)-quantile of inf
δ∈M̃⋆

G

−p′
τδ and

Min(τ) = (1− αin/2)-quantile of sup
δ∈M̃⋆

G

−p′
τδ

(S.2.2)

conditional on the data, with M̃⋆
G = {δ = (δ[1]′, · · · , δ[J1]′)′ : δ[i] ∈ ∆[i]⋆ , δ[i]′Q̂[i]δ[i]−2(G[i]⋆)′δ[i] ≤

0, i ∈ E} and G⋆ = (G[1]′, · · · ,G[J1]′)′|Data ∼ N(0, Σ̂). Again, ∆[i] is replaced with its feasible
(enlarged) version ∆[i]⋆, and γ̂[i] − γ[i] is replaced with the approximating Gaussian vector G[i]⋆.
As a reminder, this strategy is not equivalent to doing in-sample uncertainty quantification for
each time-specific unit-specific prediction τ̂ik and then combining their bounds together, since the
whole vector G⋆ has the same covariance as γ̂ = (γ̂[1]′, · · · , γ̂[J1]′)′, thus maintaining the correlation
structure among different treated units.
Technically, the above optimization procedure for constructing SC weights is equivalent to a

special case of (6.1), where the weighting matrix V is block diagonal, taking the form V =
diag(V[1], · · · ,V[J1]), and the feasible set ∆ = W×R is the Cartesian product of ∆[i] = W [i]×R[i]

for each subvector β[i] (hence, there is no cross-treated-unit constraint). The general in-sample
uncertainty quantification strategy presented earlier in (6.5) of the main text relies on the fact that

(β̂−β0)
′Q̂(β̂−β0)−2(γ̂−γ)′(β̂−β0) =

∑
i∈E [(β̂

[i]−β
[i]
0 )′Q̂[i](β̂[i]−β

[i]
0 )−2(γ̂[i]−γ[i])′(β̂[i]−β

[i]
0 )] ≤ 0

and β̂−β0 ∈ ∆ = ×i∈E∆
[i], which are immediately implied by (S.2.1). In this sense, the restriction

(S.2.1) is stricter, making the alternative bounds in (S.2.2) tighter (or at least no looser) than those
in (6.5) in the main text. Table S.2 quantifies the gains from this restriction in terms of the length
of the prediction intervals in our leading empirical application.

Table S.2: Achieved reduction in the prediction intervals length with separate optimization.

W Ridge Simplex L1-L2

Predictand M = 1 M = 2 M = 1 M = 2 M = 1 M = 2

All treated units

τik, Figure 3(a) 41.98 55.05 59.68 60.63 60.08 60.38
[16.80; 92.28] [33.15; 80.68] [17.70; 93.56] [36.61; 92.64] [11.66; 92.92] [37.44; 92.97]

τi·, Figure 4(a)
42.78 56.54 61.32 61.13 60.41 60.17

[21.08; 87.87] [35.36; 73.31] [22.20; 93.66] [40.56; 81.27] [15.28; 91.55] [42.20; 81.02]

τ·k, Figure 6(a) 94.21 94.09 94.49 94.12 95.03 94.33
[94.06; 94.24] [94.04; 94.16] [94.40; 95] [94.07; 94.25] [94.77; 95.11] [94.3; 94.41]

Countries Liberalized Before 1987

τQ1k, Figure 5(a) 76.65 78.91 78.04 78.04 79.92 76.64
[76.55; 76.92] [77.61; 79.84] [77.64; 78.92] [77.73; 78.72] [79.78; 80.13] [76.45; 77.03]

Countries Liberalized in 1987-1991

τQ2k, Figure 5(c) 84.86 84.76 85.74 86.28 85.51 85.12
[84.47; 85.30] [84.41; 84.94] [85.45; 86.44] [86.08; 86.54] [84.86; 85.92] [84.98; 85.23]

Countries Liberalized After 1991

τQ3k, Figure 5(e)
76.65 78.91 78.04 78.04 79.92 76.64

[76.55; 76.92] [77.61; 79.84] [77.64; 78.92] [77.73; 78.72] [79.78; 80.13] [76.45; 77.03]

Notes: For each target predictand we report the median percentage change in the length of the prediction intervals,
whereas in brackets we report the minimum and maximum change, respectively. The reported statistics are computed
across horizons and/or treated units. We computed the percentage change of the prediction intervals without out-of-
sample uncertainty.

Due to the complexity of the feasibility set M̃⋆
G, the alternative bounds (S.2.2) may not be the-

oretically justified using the same argument for (6.5) in the main text. However, other techniques,
such as strong approximations, can be employed to establish the validity of (S.2.2), albeit at the

5



expense of additional technical complexity. We do not pursue further justification of (S.2.2) and
leave it for future research.

S.3 Linear Factor Model Justification

There are different ways to justify the synthetic control method, including the cointegrated system
motivated by our empirical application. In this section, we briefly discuss an alternative justification
that assumes the data are generated through a linear factor model:

Yit(∞) = λtµi + νit, 1 ≤ i ≤ N, 1 ≤ t ≤ T.

For simplicity, assume that only the first unit is treated, the common factor λt is i.i.d. over
1 ≤ t ≤ T , νit is i.i.d. across 1 ≤ i ≤ N and over 1 ≤ t ≤ T , and {λt : 1 ≤ t ≤ T} and
{νit : 1 ≤ i ≤ N, 1 ≤ t ≤ T} are independent of each other. In addition, we assume that E[νit] = 0,
the factor loadings {µi : 1 ≤ i ≤ N} are fixed, and only the pre-intervention outcomes are used in
the SC construction. Then, H = {(Y2t(∞), · · · , YNt(∞)) : 1 ≤ t ≤ T}. Accordingly, w0 is given
by the following expression:

w0 = argmin
w∈W

1

T0

T0∑
t=1

E
[(

(µ1 − µ′
cw)λt + (ν1t − ν ′

t,cw)
)2∣∣∣H ]

,

where µc = (µ2, · · · , µN )′ and νt,c = (ν2t, · · · , νNt)
′, assuming the expectation (exists and) is finite.

Define Ht = {Y2t(∞), · · · , YNt(∞)}. Then, w0 can be further written as

w0 = argmin
w∈W

{ 1

T0

T0∑
t=1

E[λ2
t |Ht](µ1 − µ′

cw)2 + E[ν211] +w′
( 1

T0

T0∑
t=1

E[νt,cν ′
t,c|Ht]

)
w

− 2(µ1 − µ′
cw)

( 1

T0

T0∑
t=1

E[λtν
′
t,c|Ht]

)
w
}
,

assuming these expectations are finite. Given our assumptions on λt and νit, we expect that

1

T0

T0∑
t=1

E[λ2
t |Ht] ≈ E[λ2

t ],
1

T0

T0∑
t=1

E[νt,cν ′
t,c|Ht] ≈ E[ν21t]IN−1, and

1

T0

T0∑
t=1

E[λtν
′
t,c|Ht] ≈ 0

with high probability when T0 is large, which can be shown under additional moment conditions.
As a consequence, our expression for w0 is similar to that in Ferman and Pinto (2021).
Then, the in-sample error for the prediction of the TSUS effect τ1k is given by

InErr(τ1k) = −Y′
N t(ŵ −w0),

which represents the error in estimating the weights. The out-of-sample error is given by

OutErr(τ1k) = Y1(T1+k) −Y′
N (T1+k)w0 = ν1(T1+k) − ν ′

T1+k,cw0 + (µ1 − µ′
cw0)λT1+k.

The first term ν1(T1+k) represents the treated unit’s innovation in the post-treatment period T1+k;
the second term ν ′

T1+k,cw0 represents the weighted average of the innovations for the donor units
in the post-treatment period T1+k; and the third term (µ1−µ′

cw0)λT1+k can be thought of as the
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impact of the “bias” of the SC weights in T1 + k, if one thinks the target weight in this context is
the one recovering the true factor loading µ1 of the treated unit. Given the conditions imposed, our
method is still applicable to this scenario, and importantly, the “bias” due to (µ1 −µ′

cw0)λT1+k is
taken into account.

S.4 Proofs

S.4.1 Proof of Corollary 1

Proof. We only need to verify the conditions in Theorem 1. The proof is divided into several steps.
Step 0: We first give several useful facts. The SC construction considered in this corollary is a

special case of that considered in Theorem 1, where the weighting matrix is an identity matrix, and
there is only one feature to be matched (GDP per capita) and no additional covariates. As shown
in the main paper, for any τ̂ ∈ {τ̂ik, τ̂i·, τ̂Qk, τ̂··}, the in-sample error can always be expressed as
p′
τ (ŵ−w0). Note that ∆[i] and ∆[i]⋆ are convex in this case, and thus ×i∈S∆

[i] and ×i∈S∆
[i]⋆ (for

some set of treated units S) are all convex as well. For any κ, define Aκ = {ξ : supδ∈Mξ
p′
τδ ≤ κ},

which is convex by Lemma 2 of Cattaneo et al. (2021). Let dβ = J0J1, and C1, C2, · · · denote some
constant independent of T0. Throughout this proof, ∥ · ∥ denotes the L2 norm for vectors and the
operator norm for matrices.

Step 1: We want to verify condition (i) in Theorem 1. Without loss of generality, we only
consider the upper bound in this step, and the lower bound follows similarly. So our goal is to
bound |P(γ̂ − γ ∈ Aκ|H )− P(G ∈ Aκ|H )|.
Note that by Assumption 1, uit is independent conditional on H . To simplify expressions, assume

in this proof that γ = 0, and define ũit = uit if t ≤ Ti− 1 and ũit = 0 if t > Ti− 1. So we can write

γ̂ = (
∑T1−1

t=1 Y′
N tu1t, · · · ,

∑TJ1
−1

t=1 Y′
N tuJ1t)

′ =
∑TJ1

t=1(IJ1 ⊗YN t)ũt where ũt = (u1t, · · · , uJ1t)′.
Applying the Berry-Esseen theorem for convex sets (Raič, 2019),

|P(γ̂ − γ ∈ Aκ|H )− P(G ∈ Aκ|H )| ≤ 42(d
1/4
β + 16)

√
J1∥Σ− 1

2 ∥3
TJ1∑
t=1

E
[ J1∑

i=1

∥∥∥YN tuit

∥∥∥3∣∣∣H ]
.

Given condition (i) in the corollary, we only need to bound
∑TJ1

t=1 ∥YN t∥3 and ∥Σ−1∥. First note
that

1

T 3
0

TJ1∑
t=1

∥YN t∥3 ≤
√
J0

T
3/2
0

TJ1∑
t=1

∑
j∈N

|Yjt/
√
T0|3,

By Assumption 1, each YN t can be understood as a multivariate partial sum process indexed by
t. By strong approximation of partial sum processes (e.g., Lemma 2.2 of Chang et al., 2006),

P
(

max
1≤t≤T0

∥T−1/2
0 YN t − G̃(t/T0)∥ ≥ T−0.1

0

)
≤ C1T

−1
0 ,

where G̃(·) is a J0-dimensional Brownian motion on [0, 1] with the variance E[vtv
′
t]. On the other

hand, it is well known that for each 1 ≤ j ≤ J0, for any m > 0,

P( max
0≤r≤1

|G̃j(r)| > m) ≤ 2P( max
0≤r≤1

G̃j(r) > m) = 2P(|Gj(1)| > m),

where G̃j(·) is the j-th element of G(·). Using the tail bound for Gaussian distributions, we can
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set m =
√
2 log(2J0T0)σ2

max where σ2
max is the largest variance of {vjt : 1 ≤ j ≤ J0}, which leads to

max0≤r≤1 |Gj(r)| ≤ m with probability over H at least 1− (J0T0)
−1. Therefore,

1

T 3
0

T0∑
t=1

∥YN t∥3 ≤ J
3/2
0 T

−1/2
0

(√
2 log(2J0T0)σ2

max + T−0.1
0

)3

with probability over H at least 1 − T−1
0 − C1T

−1
0 . In addition, note that 1

T 3
0

∑TJ1
t=T0+1 ∥YN t∥3 ≤

4
T 3
0

∑TJ1
t=T0+1(∥YNT0∥3 + ∥

∑t
s=T0+1 vs∥3). Then, by the previous result and sub-Gaussianity of vt,

we conclude that with probability at least 1− CπT
−1
0 for some constant Cπ > 0,

1

T 3
0

TJ1∑
t=1

∥YN t∥3 ≤ J
3/2
0 (T

−1/2
0 + C2T

−3/2
0 + C3)

(√
2 log(2J0T0)σ2

max + T−0.1
0

)3
.

Finally, we consider Σ. By assumption in the corollary, smin(Σ) ≥ ηQ̂. Recall that Q̂ =
diag(Q̂[1], · · · , Q̂[J1]). Again, by strong approximation used previously, with probability over H at
least 1− CπT

−1
0 ,∥∥∥∥ 1

T 2
0

T0∑
t=1

YN tY
′
N t −

1

T0

T0∑
t=1

G̃
( t

T0

)
G̃
( t

T0

)′
∥∥∥∥ ≤ 2

√
J0T

−0.1
0 (m+ T−0.1

0 ).

Then, by the condition in the corollary, with probability over H at least 1−π0−CπT
−1
0 , smin(Q̂

[1]) ≥
2
3(log T0)

−1/5T 2
0 for T0 large enough. For other blocks Q̂[j] with j ̸= 1, using the previous results

about the bound on YN t, we have with probability 1− CπT
−1
0 , ∥Q̂[j] − Q̂[1]∥ ≤ C4(m+ T−0.1

0 )2T0.

Therefore, we can conclude that with probability over H at least 1 − π0 − CπT
−1
0 , smin(Q̂) ≥

(log T0)
−1/5T 2

0 /2 for T0 large enough.

Therefore, we can take πγ = π0 + CπT
−1
0 and ϵγ = Cϵ(log T0)

2T
−1/2
0 for some non-negative finite

constant Cϵ implied by the previous calculations.

Step 2: Consider condition (ii) in Theorem 1. We have the following basic inequality hold:

λmin(D
−1
T Q̂D−1

T )∥DTδ∥2 ≤ δQ̂δ ≤ 2G′δ ≤ 2∥D−1
T G∥∥DTδ∥.

where DT = diag((T1 − 1)IT1−1, · · · , (TJ1 − 1)ITJ1
−1). By condition (ii) imposed in the corollary

and the argument given in Step 1, smin(D
−1
T Q̂D−1

T ) ≥ (log T0)
−1/5/2 and λmax(D

−1
T Q̂D−1

T ) ≤
2(log T0)

1/5, with probability over H at least 1 − πγ . Then, by the Gaussian tail bound, we can
take ϖ⋆

δ = C5(log T0)
0.9/T0, π

⋆
δ = πγ , and ϵ⋆δ = T−1

0 .

Step 3: Consider condition (iii) in Theorem 1. Given the specific choices of ϱ
[i]
ℓ ’s and the

argument in Step 2, the conditions in Lemma 1 are satisfied for T0 large enough, and we can
differentiate the binding and nonbinding constraints with high probability. For each treated unit i,
an L1-L2 constraint is imposed on the corresponding SC weights. The set ∆[i] then can be written

as ∆[i] = ∆
[i]
l ∩ ∆

[i]
nl, where ∆

[i]
l and ∆

[i]
nl denote the feasibility sets defined by the L1 (simplex)

and L2 (ridge) constraints respectively. Similarly, ∆̂ in (6.7) for this special case can be written as

∆̂[i] = ∆̂
[i]
l ∩ ∆̂

[i]
nl. The L1 constraint is linear, and thus by Lemma 1, ∆

[i]
l ∩ B(0, ϖ⋆

δ ) ⊆ ∆̂
[i]
l . For

the L2 constraint, Lemma 1 implies that ∆
[i]
nl ∩ B(0, ϖ⋆

δ ) ⊆ {δ : dist(δ, ∆̂
[i]
nl ≤ C(ϖ⋆

δ )
2)} for some

constant C > 0. Then, by the specified adjustment for the L2 constraint, condition (iii) holds for
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every ∆[i]⋆ as well as ×i∈S∆
[i]⋆, for S = Q or E . In this case, we can set π⋆

∆ = πγ and ϵ⋆∆ = T−1
0 +ϵγ .

Step 4: Finally, consider condition (iv) in Theorem 1. Note that

tr
[
(Σ−1/2Σ̂Σ−1/2 − Idβ )

2
]
≤ dβsmin(Σ)−2∥Σ̂−Σ∥2.

Since λmin(Σ) ≥ ηλmin(Q̂) ≥ η(log T0)
−1/5T 2

0 /2, with probability over H at least 1−π⋆
δ , it follows

that π⋆
γ = πγ , ϵ

⋆
γ,2 = ϵ⋆Σ,2 and ϵ⋆γ,1 = 2

√
dβϵ

⋆
Σ,1(log T0)

1/5/(T 2
0 η).

Given all results above, we finally set π = πγ and ϵ = 2Cϵ(log T0)
2T

−1/2
0 +4

√
dβϵ

⋆
Σ,1(log T0)

1/5/(T 2
0 η)+

ϵ⋆Σ,2 + 3T−1
0 . Then, the proof is complete.

S.4.2 Proof of Theorem 1

Proof. Let

ℓ(δ) = δ′Q̂δ − 2G′δ with G|H ∼ N(0,Σ),

ℓ⋆(δ) = δ′Q̂δ − 2(G⋆)′δ with G⋆|Data ∼ N(0, Σ̂).

Accordingly, define

ς̄⋆ = sup
{
− p′

τδ : δ ∈ ∆⋆, ℓ⋆(δ) ≤ 0
}

ς̄ intr = sup
{
− p′

τδ : δ ∈ ∆, ∥δ∥ ≤ ϖ⋆
δ , ℓ

⋆(δ) ≤ 0
}
,

ς̄r = sup
{
− p′

τδ : δ ∈ ∆, ∥δ∥ ≤ ϖ⋆
δ , ℓ(δ) ≤ 0

}
.

The subscript r indicates the quantity is a supremum over a further restricted region for δ (due to
the constraint ∥δ∥ ≤ ϖ⋆

δ ). For any α0 ∈ [0, 1], let c̄r(α0) be the α0-quantile of ς̄r conditional on H .
Similarly, define

ς⋆ := inf
{
− p′

τδ : δ ∈ ∆⋆, ℓ⋆(δ) ≤ 0
}

ς int
r

= inf
{
− p′

τδ : δ ∈ ∆, ∥δ∥ ≤ ϖ⋆
δ , ℓ

⋆(δ) ≤ 0
}
,

ς
r
= inf

{
− p′

τδ : δ ∈ ∆, ∥δ∥ ≤ ϖ⋆
δ , ℓ(δ) ≤ 0

}
.

Let cr(α0) be the α0-quantile of ς
r
conditional on H .

Let P1 = N(0,Σ) and P2 = N(0, Σ̂). By condition (iv), on an event with P-probability at least
1 − π⋆

γ , with P(·|H )-probability at least 1 − ϵ⋆γ,2, the Kullback-Leibler divergence KL(P1,P2) ≤
2(ϵ⋆γ,1)

2, and by Pinsker’s inequality, this implies that for any κ′ ≤ κ,

|P⋆(ς̄ intr ≤ κ)− P⋆(ς̄r ≤ κ)| ≤ ϵ⋆γ,1 and |P⋆(ς int
r

≥ κ′)− P⋆(ς
r
≥ κ′)| ≤ ϵ⋆γ,1.

On the other hand, note that by condition (iii), on an event with P-probability over H at least
1− π⋆

∆, with P(·|H )-probability at least 1− ϵ⋆∆, the event {ς̄⋆ ≤ κ} implies that

sup
{
− p′

τδ : δ ∈ ∆, ∥δ∥ ≤ ϖ⋆
δ , ℓ

⋆(δ) ≤ 0
}
≤ sup

{
− p′

τδ : δ ∈ ∆⋆, ℓ⋆(δ) ≤ 0
}
≤ κ

9



and {ς⋆ ≥ κ′} implies that

inf
{
− p′

τδ : δ ∈ ∆, ∥δ∥ ≤ ϖ⋆
δ , ℓ

⋆(δ) ≤ 0
}
≥ inf

{
− p′

τδ : δ ∈ ∆⋆, ℓ⋆(δ) ≤ 0
}
≥ κ′.

Therefore,
P⋆(ς̄⋆ ≤ κ) ≤ P⋆(ς̄ intr ≤ κ) and P⋆(ς⋆ ≥ κ′) ≤ P⋆(ς int

r
≥ κ′).

Then, by definitions of ς̄⋆ and ς⋆, on an event with P-probability over H at least 1−π⋆
γ −π⋆

∆, with
P(·|H )-probability at least 1− ϵ⋆γ,2 − ϵ⋆∆, we have

1− αin/2 ≤ P⋆
(
ς̄⋆ ≤Min(τ)

)
≤ P⋆

(
ς̄r ≤Min(τ)

)
+ ϵ⋆γ,1 and

1− αin/2 ≤ P⋆
(
ς⋆ ≥ Min(τ)

)
≤ P⋆

(
ς
r
≥ Min(τ)

)
+ ϵ⋆γ,1.

Also, by condition (ii), we have with P-probability over H at least 1− π⋆
δ ,

c̄r(1− αin/2− ϵ⋆γ,1) ≥ c̄(1− αin/2− ϵ⋆γ,1 − ϵ⋆δ) and cr(αin/2 + ϵ⋆γ,1) ≤ c(αin/2 + ϵ⋆γ,1 + ϵ⋆δ).

Using condition (i) and all results above, we conclude that with P-probability over H at least
1− πγ − π⋆

γ − π⋆
∆ − π⋆

δ ,

P
(
Min(τ) ≤ −p′

τ (β̂ − β0) ≤Min(τ)
∣∣∣H )

≥P
(
cr(αin/2 + ϵ⋆γ,1) ≤ −p′

τ (β̂ − β0) ≤ c̄r(1− αin/2− ϵ⋆γ,1)
∣∣∣H )

− ϵ⋆γ,2 − ϵ⋆∆

≥P
(
c(αin/2 + ϵ⋆γ,1 + ϵ⋆δ) ≤ −p′

τ (β̂ − β0) ≤ c̄(1− αin/2− ϵ⋆γ,1 − ϵ⋆δ)
∣∣∣H )

− ϵ⋆γ,2 − ϵ⋆∆

≥ 1− αin − 2ϵ⋆γ,1 − 2ϵ⋆δ − ϵγ − ϵ⋆γ,2 − ϵ⋆∆.

Finally, by condition (v), we immediately have P(Mout(τ) ≤ OutErr(τ) ≤ Mout(τ)) ≥ 1 − αout.
Then the proof is complete.

S.4.3 Verification of Condition (i) in Theorem 1

As explained in the main paper, by convexity of the constraint set W×R and the optimality of β̂,

inf
δ∈Mγ̂−γ

−p′
τδ ≤ −p′

τ (β̂ − β0) ≤ sup
δ∈Mγ̂−γ

−p′
τδ,

where Mγ̂−γ = {δ ∈ ∆ : δ′Q̂δ−2(γ̂−γ)′δ}. Thus, condition (i) in Theorem 1 indeed requires that
γ̂−γ can be approximated by a Gaussian vector G. Corollary 1 in the paper provided a verification
of this condition in the special case of cointegrated data. In this section, we provide a more general
way to verify condition (i) by imposing a conditional independence assumption on the pseudo-true
residuals. The extension that allows for weakly dependent errors can be established using the idea
of Theorem A in Cattaneo et al. (2021). For simplicity, we assume that only T0 pre-treatment
periods are used to obtain the weights. Also, we write U[i] = (uit,1, · · · , uit,M )′, which is the vector
of pseudo-true residuals corresponding to the treated unit i.

Lemma S.1. Assume W and R are convex, β̂ in Equation (6.1) and β0 in Equation (6.3) exist,
and H = σ(B,C,pτ ). In addition, for some finite nonnegative constants, the following conditions
hold:
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(i) ut = (u1t,1, · · · , u1t,M , · · · , uJ1t,1, · · · , uJ1t,M ) is independent over t conditional on H ;

(ii) P(
∑T0

t=1 E[∥
∑J1

j=1

∑M
l=1 z̃

[j]
t,l(ujt,l − E[ujt,l|H ])∥32|H ] ≥ ϵγ(84(d

1/4
β + 16))−1) ≥ 1 − πγ where

z̃
[j]
t,l is the ((j − 1)T0M + (l − 1)T0 + t)-th column of Σ−1/2Z′.

Then, with P-probability over H at least 1− πγ,

P
(
c(α0) ≤ −p′

τ (β̂ − β0) ≤ c̄(1− α0)|H
)
≥ 1− 2α0 − ϵγ .

Proof. Define Mξ = {δ ∈ ∆ : δ′Q̂δ−2ξ′δ}. Fix Q̂ and pτ . By Lemma 2 of Cattaneo et al. (2021),
for any κ, Aκ := {ξ ∈ Rdβ : supδ∈Mξ

−p′
τδ ≤ κ} and A′

κ = {ξ ∈ Rdβ : infδ∈Mξ
−p′

τδ ≥ κ} are
convex. By Berry-Esseen Theorem for convex sets Raič (2019),

|P(γ̂ − γ ∈ Aκ|H )− P(G ∈ Aκ|H )| ≤ 42(d
1/4
β + 16)

T0∑
t=1

E
[∥∥∥ J1∑

j=1

M∑
l=1

z̃
[j]
t,l ũjt,l

∥∥∥3|H ]
,

where ũjt,l = ujt,l − E[ujt,l|H ]. By condition (ii), with P-probability over H at least 1− πγ ,

|P(γ̂ − γ ∈ Aκ|H )− P(G ∈ Aκ|H )| ≤ ϵγ/2.

Then, for any κ, with P-probability over H at least 1− πγ ,

P(−p′
τ (β̂ − β0) ≤ κ|H ) ≥ P(γ̂ − γ ∈ Aκ|H ) ≥ P(G ∈ Aκ|H )− ϵγ/2.

Similarly, we can show for any κ,

P(−p′
τ (β̂ − β0) ≥ κ|H ) ≥ P(γ̂ − γ ∈ A′

κ|H ) ≥ P(G ∈ A′
κ|H )− ϵγ/2.

Therefore, with P-probability over H at least 1− πγ ,

P
(
c(α0) ≤ −p′

τ (β̂ − β0) ≤ c̄(1− α0)
∣∣∣H )

≥ 1− 2α0 − ϵγ .

Then the proof is complete.

S.4.4 Proof of Lemma 1

Proof. In this proof, the constant C > 0 is a generic constant that is independent of T0 and may
be different in different uses.
Note that m=(β0) = 0 and m≤(β0) ≤ 0. For c := max1≤ℓ≤d≤ supβ∈B(β0,ϖ⋆

δ )
∥ ∂
∂βm≤,ℓ(β)∥, we

have max1≤ℓ≤d≤ |m≤,ℓ(β̂)−m≤,ℓ(β0)| ≤ cϖ⋆
δ with P(·|H )-probability at least 1− ϵ⋆∆, on an event

with P-probability over H at least 1 − π⋆
∆. Note that if the ℓ-th inequality constraint is binding,

i.e., m≤,ℓ(β0) = 0, then m≤,ℓ(β̂) = ∂
∂β′m≤,ℓ(β̃)(β̂ − β0) for some β̃ between β0 and β̂. By the

condition imposed on the tuning parameters ϱℓ’s, on an event with P-probability over H at least
1− π⋆

∆, with P(·|H )-probability at least 1− ϵ⋆∆, A coincides with the set of indices for the binding
inequality constraints. Without loss of generality, we assume m≤(β0) = 0 hereafter. Otherwise,
the non-binding constraints can be dropped, and the proof can proceed the same way as described
below.
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Define Γ=(β) =
∂

∂β′m=(β) and Γ≤(β) =
∂

∂β′m≤(β). Let

Γ(β) =
(
Γ′
=(β),Γ

′
≤(β),Γ

′
c(β0)

)′
, Γ0 = Γ(β0), Γ⋆ = Γ(β̂),

where Γc(β0) is chosen such that Γ(β0) is non-degenerate. By conditions (i) and (ii) imposed in
the lemma, ∥Γ0 − Γ⋆∥ ≤ C∥β̂ − β0∥ with P(·|H )-probability at least 1 − ϵ⋆∆, on an event with
P-probability at least 1− π⋆

∆.
Let

m+(·) =
(
m′

=(·), m′
≤(·), (· − β0)

′ × Γc(β0)
′
)′
.

Then, m+(β0) = 0. For each β in the neighborhood around β0 such that β − β0 ∈ ∆ ∩ B(0, ϖ⋆
δ ),

define
λ0 = (Γ0)−1

(
m+(β)−m+(β0)

)
.

Thus, Γ0
=λ

0 = 0, Γ0
≤λ

0 ≤ 0. Note that by Taylor’s expansion,

∥λ0 − (Γ0)−1Γ0(β − β0)∥ ≤ C∥β − β0∥2,

implying that ∥λ0− (β−β0)∥ ≤ C(ϖ⋆
δ )

2 with P(·|H )-probability at least 1− ϵ⋆∆, on an event with
P-probability at least 1− π⋆

∆.

Next, define m̃(·) = m+(β̂ + ·)−m+(β̂) and β̃ = ϕ⋆ + β̂ for ϕ⋆ defined below:

ϕ⋆ := m̃−1
(
Γ⋆(λ0 − (Γ⋆)−1(Γ⋆ − Γ0)λ0)

)
.

By Taylor’s expansion,

ϕ⋆ = m̃−1(0) +
[ ∂

∂ϕ′ m̃(0)
]−1

Γ⋆
(
λ0 − (Γ⋆)−1(Γ⋆ − Γ0)λ0

)
+Re

= λ0 − (Γ⋆)−1(Γ⋆ − Γ0)λ0 +Re,

where ∥(Γ⋆)−1(Γ⋆−Γ0)λ0+Re∥ ≤ C∥λ0∥2 with P(·|H )-probability at least 1−ϵ⋆∆, on an event with

P-probability over H at least 1−π⋆
∆. That is, we actually find β̃ such that ∥(β̃−β̂)−λ0∥ ≤ C(ϖ⋆

δ )
2.

Note that

m+(β̂ + ϕ⋆)−m+(β̂) = m̃(ϕ⋆) = m̃
(
m̃−1

(
Γ⋆(λ0 − (Γ⋆)−1(Γ⋆ − Γ0)λ0)

))
.

Thus, m=(β̃) = 0 and m≤(β̃) ≤ m≤(β̂), i.e., ϕ
⋆ ∈ ∆̂. This shows that dist(∆∩B(0, ϖ⋆

δ ), ∆̂) ≤ ϖ⋆
∆

with P(·|H )-probability at least 1−ϵ⋆∆, on an event with P-probability over H at least 1−π⋆
∆. Then,

the desired conclusion holds by definition of the ε-enlargement ∆̂ε. Note that when constraints are
linear, Γ0 = Γ⋆ and the second-order derivative of m+(·) is exactly zero. So the above calculation
implies that β − β0 = λ0 = ϕ⋆.
In the above, we make use of the fact that Γ⋆ is non-degenerate, i.e., its smallest eigenvalue is

bounded away from zero. Note that by assumptions on the constraints, it is feasible to construct
Γc such that Γ0 is non-degenerate (with high probability over H ). Then, by Weyl’s inequality,

smin(Γ
⋆(Γ⋆)′) ≥ smin(Γ

0(Γ0)′)− C∥β̂ − β0∥,

implying smin(Γ
⋆) ≥ smin(Γ

0) − C∥β̂ − β0∥ > 0 with P(·|H )-probability at least 1 − ϵ⋆∆, on an
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event with P-probability at least 1− π⋆
∆, where smin(·) here denotes the smallest eigenvalue of the

symmetric matrix inside. Then, the proof is complete.

S.5 Discussion on Tuning Parameters

S.5.1 Determining Binding Constraints

Our proposed strategy in Section 6.2 for constructing the constraint set in the simulation relies
on the tuning parameters ϱℓ’s, which are used to differentiate the binding constraints from the
non-binding ones. The recommended choice described in (6.8) and (6.9) can be rationalized as
follows.
For ease of notation, suppose that there is only one treated unit, and thus we can omit the

superscript [i] for quantities like β
[i]
0 or ϱ[i] with no confusion. Assume the ℓ-th constraintm≤,ℓ(β) ≤

0 is binding (m≤,ℓ(β0) = 0), and m≤,ℓ(·) is sufficiently smooth. By the mean value theorem,

|m≤,ℓ(β̂)| = | ∂
∂β′m≤,ℓ(β̌)(β̂ − β0)| ≤ ∥ ∂

∂βm≤,ℓ(β̌)∥2∥β̂ − β0∥2, where β̌ is some point between β0

and β̂ . The parameters ϱ
[i]
ℓ are used to characterize this upper bound. For ∂

∂βm≤,ℓ(β̌), a natural

“estimator” would be ∂
∂βm≤,ℓ(β̂). The difference between the two is bounded by c1∥β̂ − β0∥2 for

some constant c1 > 0 (with high probability). Then, it remains to characterize ∥β̂ − β0∥2.
Note that the basic inequality below always holds (deterministically) by optimality of β̂:

∥β̂ − β0∥2 ≤
2∥γ̂ − γ∥2/

√
T0

smin(Q̂)/T0

× T
−1/2
0 =: CT−1/2

0 . (S.5.1)

We first discuss the denominator. Recall that Q̂ = Z′VZ. Since an (unrestricted) intercept is often
included in the SC construction, we assume the predictor variables included in Z are de-meaned (and
the constant term is excluded from Z). If V is an identity matrix and the predictor variables are
(approximately) orthogonal to each other, then smin(Q̂/T0) is the minimum diagonal entry of Q̂/T0,
i.e., min1≤j≤J0 σ̂

2
bj
, which motivates the choice of the denominator in (6.9). On the other hand,

recall that the numerator γ̂ = Z′u. As discussed in the paper, we can (conditionally) approximate
γ̂ − γ by the Gaussian vector G. Then, by Gaussian tail bound, it can be shown that, for any

large λ > 0, T
−1/2
0 ∥γ̂ − γ∥∞ ≤ (

√
2 log dβ + λ) ×

√
max1≤j≤J0 V[γ̂j |H ]/T0 with high probability.

When u is independent of H and its components are independent over t, max1≤j≤J0 V[γ̂j |H ]/T0 =
σ2
u ×max1≤j≤J0 σ̂

2
bj
. Therefore, we can set

C = C1 :=
2
√
dβ(

√
2 log dβ + λ)max1≤j≤J0 σ̂bj σ̂u

min1≤j≤J0 σ̂
2
bj

for any large λ. In most applications, however, the SC weights are sparse due to the simplex- or
lasso-type constraints. It is known from the sparse linear regression literature that the bound C1
can be further improved by replacing the factor

√
dβ by c3

√
∥β0∥0, where ∥·∥0 denotes the number

of nonzeros in a vector and c3 > 0 is some absolute constant (see, e.g., Wainwright, 2019, Theorem
7.13). Assuming

√
log T0 ≥ 4

√
2c3, we take λ =

√
log dβ log T0/(4c3) and use ∥β̂∥0 as a proxy for

∥β0∥0, which yields our recommended choice of C given in (6.9):

C = C2 :=

√
∥β̂∥0 log dβ log T0max1≤j≤J0 σ̂bj σ̂u

min1≤j≤J0 σ̂
2
bj

.
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Furthermore, when σ̂2
bj

is roughly the same across j, then C2 can be further simplified to

C = C3 =

√
∥β̂∥0 log dβ log T0 σ̂u

min1≤j≤J0 σ̂bj
.

While these choices are only rules of thumb justified under specific assumptions on the data
generating process, they at least have the correct order of magnitude and are valid at least when
T0 is large. For instance, for the cointegrated data considered in our basic setup, it can be shown
that, for sufficiently small c4 > 0, σ̂2

bj
≥ c4T0 with high probability, and σ̂2

u is bounded with high

probability. Therefore, the suggested ϱ based on C2 has the order of T−1
0 , which is the well-known

rate of convergence for cointegrated regression.
When SC weights are obtained by matching on both stationary and non-stationary features,

the contribution of the stationary components to the concentration of β̂ is negligible. In other
words, the order of magnitude for the bound on ∥β̂ − β∥2 is primarily determined by the non-
stationary components. To see this, assume that we match on two features, a non-stationary
B1 = (b1,1, · · · ,bT0,1)

′ ∈ RT0×J0 and a stationary B2 = (b1,2, · · · ,bT0,2)
′ ∈ RT0×J0 . Consider the

basic inequality (S.5.1) again. Q̂/T0 can be written as 1
T0

∑T0
t=1 bt,1b

′
t,1 +

1
T0

∑T0
t=1 bt,2b

′
t,2 =: I+ II.

As explained previously, with high probability, smin(I/T0) is bounded from below by T0, up to a
sufficiently small constant, whereas II/T0 is much smaller—under mild conditions, it is bounded
with high probability. For the numerator (γ̂ − γ)/T0, we can similarly decompose it into a non-
stationary part and a stationary part. By the argument described before, it follows that the
stationary part is much smaller than the non-stationary part, leading to a deviation bound for
β̂ on the order of T−1

0 . Therefore, we recommend applying the above formulas using the non-
stationary features only in practice.
Finally, as a reminder, other choices of ϱ can be proposed based on a slightly different basic

inequality: ∥β̂ − β0∥2 ≤ 2∥γ̂∥2/smin(Q̂). It also holds deterministically by optimality of β̂. The
denominator is the same as before, but the numerator γ̂ is not demeaned. When the model is
correctly specified (γ = 0), the numerator may be small; however, when the model is misspecified,
γ̂ is not necessarily small, and it may be characterized by its sample analogue. Thus, we can set

ϱ =
2
√

dβ max1≤j≤Jo σ̂
2
bju

min1≤j≤J0 σ̂
2
bj

where σ̂2
bju

is the estimated covariance between the pseudo-true residual u and the j-th column of

B (the features of the j-th control unit). However, compared to the alternatives described in the
paper, this bound is generally loose and thus is not recommended.

S.5.2 Adjustment for Nonlinear Constraints

As described in the main paper, we have an additional adjustment to nonlinear constraints in the
simulation (the second term on the right-hand side of (6.10)). In this section we briefly discuss the
necessity of this adjustment and the justification of the proposed strategy.

S.5.2.1 Necessity of Adjustment

The constraints allowed in this paper is more general than those considered in Cattaneo et al.
(2021). Specifically, condition (T2.iii) in Cattaneo et al. (2021) requires the constraint set used in
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the simulation for in-sample uncertainty quantification be locally equal to the original constraint
set in the synthetic control problem. In the notation of this paper, that condition means that,
with some high probability, ∆⋆ ∩ B(0, ϖ⋆

δ ) = ∆ ∩ B(0, ϖ⋆
δ ) for some (small) ϖ⋆

δ -neighborhood of
zero. This is generally true when constraints are formed by linear functions. To see this, suppose
that there are two donor units, an L1 constraint W = {(w1, w2) : |w1|+ |w2| ≤ 1} is imposed, and
the pseudo-true value is w0 = (1, 0). The constraint set ∆⋆ used in the simulation relies on the
estimated weights ŵ, which are generally close (but not exactly equal) to w0 with high probability.
For instance, let ŵ = (0.99, 0.01), and applying the suggested strategy described in Section 6.2,
one correctly finds that two linear constraints among those derived from decomposing the original
L1 constraint, w1 + w2 ≤ 1 and w1 − w2 ≤ 1, are binding. Thus, one defines ∆⋆ = {(δ1, δ2) :
(δ1 +0.99) + (δ2 +0.01) ≤ 0.99+ 0.01, (δ1 +0.99)− (δ2 +0.01) ≤ 0.99− 0.01}, which is exactly the
same as ∆ = W −w0 locally around (0, 0).
However, such an exact equality is generally not possible when constraints are formed by nonlinear

functions. Still consider the same example, but an L2 constraint W = {(w1, w2) : w2
1 + w2

2 ≤ 1}
is imposed instead. Applying the same strategy, one correctly finds that the constraint should
be binding and thus lets ∆⋆ = {(δ1, δ2) : (δ1 + 0.99)2 + (δ2 + 0.01)2 ≤ 0.992 + 0.012}, whereas
the (centered) original constraint set is ∆ = {(δ1, δ2) : (δ1 + 1)2 + δ22 = 1}. In other words, ∆
and ∆⋆ are two “circles” passing through (0, 0). Although they are locally close near (0, 0), their
boundaries have different tangents at that point, and hence the two sets are not locally identical, no
matter how small the neighborhood B(0, ϖ⋆) is. In this sense, the results in Cattaneo et al. (2021)
are more applicable to synthetic controls with linear constraints (such as simplex and Lasso). By
contrast, the local approximate equality in condition (iii) of Theorem 1 is much weaker and makes
the results in this paper applicable to more general cases with possibly nonlinear constraints. Given
the fact described above, when there are (binding) nonlinear constraints, we propose to enlarge the
feasibility set defined by nonlinear constraints to satisfy the sufficient condition (iii) of Theorem 1.

S.5.2.2 Enlarging Nonlinear Constraint Sets

In this section we briefly discuss the justification for the adjustment in (6.10). Our strategy is
motivated by the proof of Lemma 1, which characterizes the distance between ∆ ∩ B(0, ϖ⋆

δ ) and

∆̂. For simplicity, assume that there is only one treated unit (so the superscript [i] can be omitted
with no confusion).
Suppose that we only have binding inequality constraints m(β) ≤ 0 (so m(β0) = 0), where

m(·) is a d≤-vector of sufficiently smooth functions. For any feasible β ∈ Rdβ close to β0 such that
β − β0 ∈ ∆ ∩ B(0, ϖ⋆

δ ),

m(β) = m(β)−m(β0) =
∂

∂β′m(β0)(β − β0) +
1

2
(β − β0)

′
[ ∂2

∂β∂β′m(β̌)
]
(β − β0)

for some point β̌ between β and β0, where ∂
2m(β̌)/∂β∂β′ is a dβ×dβ×d≤ array, with each sheet the

second-order derivative matrix for one constraint function. Thus, (β−β0)
′[∂2m(β̌)/∂β∂β′](β−β0)

is a d≤-vector, with each element corresponding to (β−β0)
′[∂2mℓ(β̌)/∂β∂β

′](β−β0) for 1 ≤ ℓ ≤ d≤.

Let Γ0 =
∂
∂βm(β0) and Γ̂ = ∂

∂βm(β̂). Assume Γ0 is invertible in the neighborhood of β0. (When
d≤ < dβ, we can complement Γ0 with additional rows and construct an invertible one, which is
formalized in the proof of Lemma 1). Then,

Γ−1
0 m(β)− (β − β0) =

1

2
Γ−1
0

[
(β − β0)

′ ∂2

∂β∂β′m(β̌)(β − β0)
]
=: L
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It can be shown that λ := Γ−1
0 m(β) is (approximately) in ∆̂. To see this,

m(β̂ + λ) ≈ m(β̂) +
∂

∂β′m(β0)λ = m(β̂) + (m(β)−m(β0)) ≤ m(β̂).

This is formalized in the proof of Lemma 1. For the moment, assume λ ∈ ∆̂. Then,

m(β − β0 + β̂)−m(β̂) = m(β̂ + λ− L )−m(β̂)

≈ m(β̂ + λ)− Γ0L −m(β̂)

≤ −Γ0L

≈ −1

2
(β − β0)

′ ∂2

∂β∂β′m(β0)(β − β0).

The errors introduced by “≈” are of smaller order under mild conditions. The above calculation
implies that any β − β0 ∈ ∆ ∩ B(0, ϖ⋆

δ ) (approximately) belongs to the following adjusted version

of ∆̂ in (6.7): {
δ : m(β̂ + δ) ≤ m(β̂) +

1

2
(β − β0)

′ ∂2

∂β∂β′m(β0)(β − β0)
}
.

Then, for each inequality constraint m≤,ℓ(β̂+ δ) ≤ m≤,ℓ(β̂), the “adjustment” to the upper bound
is at most

1

2
smax

( ∂2

∂β∂β′m≤,ℓ(β0)
)
∥β − β0∥22.

Given the high-probability bound ϱ for ∥β̂ − β0∥2, we propose the adjustment in (6.10).

Notes: Our enlargement strategy used to define ∆⋆ in Section 6.2 can be conceptually understood
as follows. A constraint set ∆ can be generally written as ∆ = ∩L

j=1Aj for a sequence of convex

sets Aj . Each Aj is defined by one inequality. Accordingly, ∆̂ in (6.7) (with no enlargement) can

be written as ∆̂ = ∩L
j=1Âj .

Let Âj,εj be an εj-enlargement of Âj . We can apply Lemma 1 to each pair of Aj and Âj , and

then Aj ⊆ Âj,εj for an appropriate (small) εj . For any point g ∈ ∆, g ∈ Aj for every j. So

g ∈ Âj,εj . Then, g ∈ ∩L
j=1Âj,εj . Since it holds for any g, we have ∆ ⊆ ∆⋆ := ∩L

j=1Âj,εj . The
sufficient condition (iii) in Theorem 1 holds.
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S.6 Second Order Cone Programming

In this section, we first define three types of convex optimization problems that we will be relying
on (for background knowledge and technical details, see Boyd and Vandenberghe (2004)). Second,
we illustrate the link between these three families of convex problems. Third, we show that the op-
timization problems underlying the prediction/estimation and uncertainty quantification problems
for SC presented in Section 6 of the main text are quadratically constrained quadratic program
(QCQP) and quadratically constrained linear problem (QCLP), respectively, and show how to rep-
resent them as second-order cone program (SOCP). Finally, we provide two examples by showing
how to write the L1-L2-type and Lasso-type constraints in conic form. These approaches are imple-
mented in our companion general-purpose software (Cattaneo, Feng, Palomba and Titiunik, 2025),
where we show that they lead to remarkable speed and scalability improvements.

S.6.1 Families of Convex Optimization Problems

QCQPs and QCLPs. A quadratically constrained quadratic program is an optimization problem
of with the following form

min
x

x′P0x+ q′
0x+ w (S.6.1)

subject to x′Pjx+ q′
jx+ rj ≤ 0, j = 1, . . . ,m, (Quadratic inequality constraint)

Fx = g, (Linear equality constraint)

where P0,P1, . . . ,Pm ∈ Mn×n(R), q0,q1, . . . ,qm ∈ Rn, x ∈ Rn, F ∈ Mm×n(R), g ∈ Rm, and
r0, r1, . . . , rm, w ∈ R. If all the matrices P0,P1, . . . ,Pm are positive semi-definite the QCQP is
convex. Moreover, if P0 = 0 the QCQP becomes a QCLP. For this reason, in what follows we will
restrict our attention to QCQPs as they naturally embed QCLPs.

SOCPs. To define a SOCP, it is necessary to first give the definition of a second-order cone and
then introduce the notion of associated generalized inequality.

Second-order cone definition. A set C is called a cone if for every x ∈ C and α ≥ 0 we have
αx ∈ C. A set C is a convex cone if it is convex and a cone, i.e. if ∀x1,x2 ∈ C,and ∀α1, α2 ≥ 0, we
have

α1x1 + αx2 ∈ C.

Now, consider any norm || · || defined on the Euclidean space Rn. The norm cone associated with
the norm || · || is defined to be the set

C = {(x, t) ∈ Rn+1 : ||x|| ≤ t}

and it is a convex cone by the standard properties of the norms. A second-order cone is the
associated norm cone for the Euclidean norm and it is typically defined as

C =
{
(x, t) ∈ Rn+1 : ∥x∥2 ≤ t

}
=

{[
x
t

]
:
[
x
t

]′ [ I 0
0 −1

] [
x
t

]
≤ 0, t ≥ 0

}
Generalized inequality. A cone C is solid if it has non-empty interior and it is pointed if

x ∈ C,−x ∈ C implies that x = 0. We say that a cone C is proper if is it convex, closed, solid, and
pointed. Proper cones in the Euclidean space Rn are useful because they induce a partial ordering
that enjoys almost all the properties of the basic one in R. Therefore, given a cone C ⊆ Rn, we can

17



define the generalized inequality ⪯C for any two vectors x,y ∈ Rn

x ⪯C y ⇐⇒ y − x ∈ C.

From this definition we can see that quadratic constraints such as ||x||2 ≤ h can be re-written as
second-order cone constraints of the form x ⪯C h for some second-order cone C. Note that if C = Rm

+

then if m = 1, ⪯C is the standard inequality ≤ in R, whereas if m > 1, ⪯C is the component-wise
inequality in Rm.

Second-order cone program. Let K be a cone such that K = Rm
+ × K1 × K2 × · · · × KL where

Kl := {(k0,k1) ∈ R×Rl : ||k1||2 ≤ k0}, l = 1, . . . , L. Let⪯K be the generalized inequality associated
with the cone K. An optimization problem is called second-order cone program if it has the following
form

min
x

c′x, (S.6.2)

subject to Gx ⪯K h, (Second-order cone constraint)

Ax = b. (Linear equality constraint)

S.6.2 Link Between QCQP and SOCPs

Any QCQP can be converted to a SOCP (Boyd and Vandenberghe, 2004). In other words, we can
always rewrite an optimization problem such as (S.6.1) in the form of (S.6.2). First, we present
the general result and then we explain all the necessary steps to reformulate QCQPs as SOCPs.
Without loss of generality, assume that w = 0 in (S.6.1) and, to ease notation, let m = 1 so that
there is only a single quadratic inequality constraint. Moreover, given any positive semi-definite
matrix P, let P1/2 be the square root of P, that is the unique symmetric positive semi-definite
matrix R such that RR = R′R = P. Then for any QCQP the following two formulations are
equivalent

QCQP

min
x

x′P0x+ q′
0x

subject to Fx = g,

x′P1x+ q′
1x+ r1 ≤ 0.

SOCP

min
x,v,t,s

v + q′
0x

subject to Fx = g,

t+ q′
1x+ r1 ⪯R+ 0,

P
1/2
0 x ⪯K1+n v,

P
1/2
1 x ⪯K1+n s.

We can see that the logic beneath the conversion of a QCQP into a SOCP is to “linearize” all the
non-linear terms appearing either in the objective function or in the inequality constraints. The
“linearization” step does come at a cost, as it requires the introduction of a slack variable every
time we rely on it. Indeed, above we linearized the objective function and the quadratic inequality
constraint by introducing two auxiliary slack variables.
More formally, let x′Px be a symmetric positive semi-definite quadratic form and consider the

constraint x′Px ≤ y. Then

(i) Since P is symmetric positive semi-definite the epigraph x′Px ≤ y is a convex set and P1/2

is well-defined.
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(ii) Write the inequality constraint as a constraint involving the Euclidean norm ∥ · ∥2

y ≥ x′Px = x′P1/2P1/2x = ||P1/2x||22.

(iii) Note that

||P1/2x||22 ≤ y ⇐⇒
∥∥∥∥[ 1− y

2P1/2x

]∥∥∥∥
2

≤ 1 + y, (S.6.3)

which can be verified by squaring the two sides of the last inequality and expand the norm.

(iv) More is true, as the right-most inequality in (S.6.3) defines the following second-order cone
for given P1/2

C =

{(
1− y, 2P1/2x, 1 + y

)
:

∥∥∥∥[ 1− y
2P1/2x

]∥∥∥∥
2

≤ 1 + y

}
,

which in turn induces the generalized inequality P1/2x ⪯C y.

S.6.3 Specific Synthetic Control Problems as SOCPs

We illustrate the approach described above for the L1-L2 constraint and the Lasso constraint. To
ease notation, we do not consider the regularization to the local geometry of ∆. Note that simplex,
ridge, or least squares are particular cases of L1-L2. Throughout this section, we assume that
Ti ≡ T0 for all i ∈ E .

L1-L2-type W. Consider first the prediction/estimation SC optimization problem, which relies
on the following program:

min
w,r

(A−Bw −Cr)′V(A−Bw −Cr) (S.6.4)

subject to ||w[i]||1 = 1, i = 1, . . . , J1, (L1 equality constraints)

||w[i]||2 ≤ Q[i], i = 1, . . . , J1, (L2 inequality constraints)

w ≥ 0, (non-negativity constraint)

where, as always, ≥ is understood as a component-wise inequality for vectors (w ∈ RJ0·J1). First,
notice that the non-convex constraints ||w[i]||1 = 1, i = 1, . . . , J1 can be replaced with the convex
constraints 1′w[i] = 1, i = 1, . . . , J1 because of the non-negativity constraint on the elements of w.
Then, we can cast (S.6.4) as a SOCP as follows

min
w,r,v,{si}

J1
i=1

v

subject to 1′w[i] = 1, (L1 equality constraints)

−w ⪯C1 0, (cone in RJ0·J1)[
1− v

2V1/2(A−Bw −Cr)

]
⪯C2 1 + v, (cone in R2+T̃ ·M )

si ⪯C3 Q[i], i = 1, . . . , J1, (J1 cones in R)
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[
1− si
2w[i]

]
⪯C4 1 + si, i = 1, . . . , J1, (J1 cones in R2+J0)

where K = C1 × C2 × CJ1
3 × CJ1

4 = RJ0·J1
+ × KT̃ ·M+1 × RJ1

+ ×KJ1
J0+1 is the conic constraint for this

program.
For uncertainty quantification, we need to solve the optimization problem underlying (6.5) in the

main text. We discuss the lower bound only. Recalling that β = (w′, r′)′, we have

inf
β=(w′,r′)′

p′
τ (β − β̂) (S.6.5)

subject to ||w[i]||1 = 1, i = 1, . . . , J1, (L1 equality constraints)

||w[i]||2 ≤ Q[i], i = 1, . . . , J1, (L2 inequality constraints)

w ≥ 0, (non-negativity constraint)

(β − β̂)′Q̂(β − β̂)− 2(G⋆)′(β − β̂) ≤ 0. (constrained least squares)

We can cast the SC optimization problem in (S.6.5) in conic form as follows:

min
w,r,{si}

J1
i=1,t

p′
τβ

subject to 1′w[i] = 1, i = 1, . . . , J1, (L1 equality constraints)

t+ a′β + f ⪯C1 0, (cone in R)
−w ⪯C2 0, (cone in RJ0·J1)

si ⪯C3 Q[i], i = 1, . . . , J1, (J1 cones in R)[
1− si
2w[i]

]
⪯C4 1 + si, i = 1, . . . , J1, (J1 cones in R2+J0)[

1− t
2Q1/2β

]
⪯C5 1 + t, (cone in R2+(J0+KM)·J1)

where K = C1×C2×C3×C4×C5 = R+×RJ0·J1
+ ×RJ1

+ ×KJ1
1+J0

×K1+(J0+KM)·J1 is the conic constraint

for this program, a = −2(′Qβ̂ +G⋆)′, and f = β̂′Qβ̂ + 2G⋆β̂.

Lasso-type W. We show how to write the QCQP as a SOCP whenW has a lasso-type constraint.
In this case, the SC weight construction (3.1) has the form:

min
w,r

(A−Bw −Cr)′V(A−Bw −Cr) (S.6.6)

subject to ||w[i]||1 ≤ 1, i = 1, . . . , J1. (L1 inequality constraints)

We can write the optimization problem in (S.6.6) as a SOCP of the following form

min
w,r,{zi}

J1
i=1,v

v

subject to

[
1− v

2V1/2(A−Bw −Cr)

]
⪯C1 1 + v, (cone in R2+T0·M ·J1)

1′zi ⪯C2 1, i = 1, . . . , J1, (J1 cones in R)
−w ⪯C3 z, (cone in RJ0·J1)
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w ⪯C4 z, (cone in RJ0·J1)

where K = C1 × CJ1
2 × C3 × C4 = K1+T0·M ·J1 × RJ1

+ ×RJ0·J1
+ × RJ0·J1

+ is the conic constraint for this
program and z := (z′1, . . . , z

′
J1
)′.

For uncertainty quantification, we need to solve the optimization problem underlying (6.5) in the
main text. Here we discuss the lower bound only for brevity. Recalling that β = (w′, r′)′, we have

inf
β=(w′,r′)′

p′
τ (β − β̂) (S.6.7)

subject to ||w[i]||1 ≤ 1, i = 1, . . . , J1, (L1 inequality constraints)

(β − β̂)′Q̂(β − β̂)− 2(G⋆)′(β − β̂) ≤ 0. (constrained least squares)

We can cast the SC optimization problem in (S.6.7) in conic form as follows:

min
w,r,{zi}

J1
i=1,t

p′
τβ

subject to t+ a′β + f ⪯C1 0, (cone in R)

1′z[i] ⪯C2 1, i = 1, . . . , J1, (J1 cones in R)
−w ⪯C3 z, (cone in RJ0·J1)

w ⪯C4 z, (cone in RJ0·J1)[
1− t

2Q1/2β

]
⪯C5 1 + t, (cone in R2+(J0+KM)·J1)

where K = C1 × CJ1
2 × C3 × C4 × C5 = R+×RJ1

+ ×RJ0·J1
+ × RJ0·J1

+ × K1+(J0+KM)·J1 is the conic

constraint for this program, a = −2(′Qβ̂ +G⋆)′, and f = β̂′Qβ̂ + 2G⋆β̂.
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S.7 Data Preparation and Software Implementation

In this section, we first describe the variables in the Billmeier and Nannicini (2013) (BN, henceforth)
dataset and then go through the details of our empirical specification.

S.7.1 Data Description

The original BN dataset contains data on some economic and political variables for 180 countries,
over a period of time spanning from 1960 to 2005.1 In detail, the variables available in the dataset
are:

• real GDP per capita in 2002 US dollars.

• enrollment rate in secondary schooling.

• population growth.

• yearly inflation rate.

• the investment ratio (the investment of a country as a percentage of GDP).

• an indicator that captures whether the country is a democracy (1) or not (0).

• an indicator that captures whether the economy of the country is considered closed (0) or
not (1) as developed in Sachs, Warner, Åslund and Fischer (1995) (henceforth, Sachs-Warner
indicator). In particular, the indicator takes value 0 if any of the following conditions is
verified:

i) the average tariff is above 40%;

ii) non-tariff barriers are imposed on a volume of imports larger than 40%;

iii) the country has a socialist economic system;

iv) the exchange rate black market premium is above 20%;

v) state monopolies control most of the country exports.

Despite having six candidate variables to match on, we end up matching on at most two variables
because of missing data. Specifically, we always match on real GDP per-capita, whereas in the
robustness exercise in Supplemental Appendix S.8 we also match on investment-to-GDP ratio.
A second difference of our final dataset from the original one used in BN is the final pool of

countries - treated and donors - on which we conduct the analysis. In particular, we adopt the
following criteria to select the countries to be included in our final dataset as either donors or
treated units:

1. We restrict the analysis to countries in Sub-Saharan Africa. We define this group by excluding
from the analysis North African countries according to the United Nations (UN) classifica-
tion (Algeria, Egypt, Libya, Morocco, Sudan, Tunisia, and Western Sahara) as well as any
additional country that is not covered by the UN classification but is a member of the Arab
League (Djibouti, Mauritania, Somalia).

1We downloaded the dataset from the Harvard Dataverse at https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/28699.
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2. As in Bratton and Van de Walle (1997), we exclude Namibia because the Sachs-Werner
indicator is missing for such a country.

Table S.3 shows the final set of countries we select, together with their treatment date.

Table S.3: List of all countries included in our analysis

Angola ∞ Lesotho ∞
Benin 1990 Madagascar 1996
Botswana 1979 Malawi ∞
Burkina Faso 1998 Mali 1988
Burundi 1999 Mauritius 1968
Cabo Verde 1991 Mozambique 1995
Cameroon 1993 Niger 1994
Chad ∞ Nigeria ∞
Congo ∞ Rwanda ∞
Ethiopia 1996 Senegal ∞
Gabon ∞ Sierra Leone ∞
Gambia 1985 South Africa 1991
Ghana 1985 Tanzania 1995
Guinea 1986 Togo ∞
Guinea-Bissau 1987 Uganda 1988
Ivory Coast 1994 Zambia 1993
Kenya 1993 Zimbabwe ∞

Notes: ∞ denotes that a country has never experienced liberalization during the observed time span.

S.7.2 Implementation Details

In this section, we describe all the details of the empirical application presented in the main text.

Constraint type. Our preferred specification uses the L1-L2 constraint, i.e.,

WL1−L2 =
J1

ą

i=1

{
w[i] ∈ RJ0

+ : ||w[i]||1 = 1, ||w[i]||2 ≤ Q[i]
}
,

whereas the results in the Supplemental Appendix Section S.8.2 and S.8.1 use simplex- and Ridge-
type constraints of the form

WS =
J1

ą

i=1

{
w[i] ∈ RJ0

+ : ||w[i]||1 = 1
}
, WR =

J1
ą

i=1

{
w[i] ∈ RJ0 : ||w[i]||2 ≤ Q[i]

}
.

Table S.4 shows the effective values for Q[i], i = 1, . . . , J1 that we compute in our empirical applica-
tion. Further below we explain in greater detail how these regularization parameters are computed
in practice.

Selected features. Our main specification uses only one feature (M = 1)–the logarithm of real
GDP per-capita–, uses the identify weighting matrix, and includes a constant term, that is

B[i] = [Y1 · · · YJ0 ] , C[i] = 1Ti , R = RJ1 , V[i] = ITi , i = 1, . . . , J1,

where Yj = (Yj1, . . . , YjTi)
′, j = 1, . . . , J0 is the pre-treatment log-GDP per-capita of the j-th

donor, 1Ti is a Ti × 1 vector of ones, and ITi is the Ti × Ti identify matrix.
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In Supplemental Appendix Section S.8.3, we present results using two features (M = 2), where
we also match on the investment-to-GDP ratio and control for a feature-specific constant term and
linear trend, i.e.

B[i] =
[
Y1 · · · YJ0
IR1 · · · IRJ0

]
, C[i] =

1 1
1 2
...

...
1 Ti

 , R = R2·J1 , V[i] =

[
S
[i]
Y 0

0 S
[i]
IR

]
, i = 1, . . . , J1,

where IRj = (IRj1, . . . , IRjTi)
′, j = 1, . . . , J0 is the pre-treatment investment-to-GDP ratio of the

j-th donor, S
[i]
Y = diag(σ̂−1

Y,1, . . . , σ̂
−1
Y,Ti

), S
[i]
IR = diag(σ̂−1

IR,1, . . . , σ̂
−1
IR,Ti

), with

σ̂W,t =

 1

J0 − 1

J0∑
j=1

(Wjt −W t)
2

1/2

, W t =
1

J0

J0∑
i=1

Wjt, t = 1, . . . , Ti, W ∈ {Y, IR},

and diag(x) yields a square diagonal matrix with the elements of x on its main diagonal.

Tuning parameters. Regarding the choice of Q[i], it is well-established that the Ridge regression
problem can be equivalently expressed both as an unconstrained penalized optimization problem
and as a constrained optimization problem. For simplicity, assume C is not included and M = 1.
The two Ridge-type optimization formulations are as follows:

ŵ[i] = arg min
w[i]∈W

(A[i] −B[i]w[i])′V[i](A[i] −B[i]w[i]) + λ[i]||w[i]||22,

where λ[i] ≥ 0 is a regularization parameter, and

ŵ[i] = arg min
w[i]∈W,||w[i]||22≤(Q[i])

2
(A[i] −B[i]w[i])′V[i](A[i] −B[i]w[i]),

where Q[i] ≥ 0 is an explicit upper bound on the norm of w[i]. Under the assumption of Gaussian
errors, an optimal choice of the regularization parameter λ[i] for risk minimization, as suggested by
Hoerl et al. (1975), is:

λ[i] =
J0(σ̂

[i]
OLS)

2

∥ŵ[i]
OLS∥22

,

where (σ̂
[i]
OLS)

2 and ŵ
[i]
OLS are the estimates of the residual variance and the coefficients from the

ordinary least squares (OLS) regression of A[i] onto B[i], respectively. Given the two optimization
problems above, there exists a one-to-one correspondence between λ[i] and Q[i]. For example,
assuming the columns of B[i] are orthonormal, the closed-form solution for the Ridge estimator is:

ŵ[i] = (I+ λ[i]I)−1ŵ
[i]
OLS,

and if the constraint on the ℓ2-norm is active, we have Q[i] = ∥ŵ[i]∥2 = ∥ŵ[i]
OLS∥2/(1 + λ[i]). When

more than one feature is considered (i.e., M > 1), we compute the constraint size Q
[i]
ℓ for each

feature ℓ = 1, . . . ,M , and then choose Q[i] as the most restrictive constraint to promote shrinkage
of w[i]:

Q[i] := min
ℓ=1,...,M

Q
[i]
ℓ .
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Table S.4: Pre-treatment length and values of the regularization parameters Q[i], i = 1, . . . , J1.

Treated Unit Q[i],M = 1 Q[i],M = 2 Ti |Ti|
Benin 2.041 0.699 1963 - 1989 27
Botswana 2.119 0.771 1963 - 1978 16
Cabo Verde 0.877 0.5 1963 - 1990 28
Cameroon 2.336 0.786 1963 - 1992 30
Gambia 1.401 1.035 1963 - 1984 22
Ghana 0.858 0.972 1963 - 1984 22
Guinea 0.591 0.65 1963 - 1985 23
Guinea-Bissau 0.942 0.718 1963 - 1986 24
Ivory Coast 1.212 0.838 1963 - 1993 31
Kenya 0.959 0.569 1963 - 1992 30
Mali 1.445 0.65 1963 - 1987 25
Mauritius 1.705 1.145 1963 - 1967 5
Niger 2.252 1.793 1963 - 1993 31
South Africa 1.169 0.5 1963 - 1990 28
Uganda 1.797 0.5 1963 - 1987 25
Zambia 2.554 0.5 1963 - 1992 30

Notes: the rule of thumb to compute Q[i] is the same for L1-L2 and Ridge. Moreover, the values for Q[i]

reported are the ones obtained when predicting τit and τi· which are identical by construction. Finally, Q[i]

is lower-bounded at 0.5 to avoid excessive shrinkage. More details on the rules of thumb used can be found
in Cattaneo, Feng, Palomba and Titiunik (2025), Section 3.1.

In-sample Uncertainty. In order to quantify the in-sample uncertainty from estimating the SC
weights, we need to construct the bounds Min andMin on p′

τ (β̂ − β0). The following strategy
is adopted. First, we treat the synthetic control weights as possibly misspecified, thus estimating
both the first and second conditional moments of the pseudo-true residuals u. The conditional
first moment E[u |H ] is estimated feature-by-feature using a linear-in-parameters regression of the
residual û = A −Bŵ −Cr̂ on B and the first lag of B, whereas the conditional second moment
V[u |H ] is estimated with an HC1-type estimator. We then draw S = 200 i.i.d. random vectors
from the Gaussian distribution N(0, Σ̂), conditional on the data, to simulate the criterion func-
tion ℓ⋆(s)(β − β0) := (β − β0)

′Q̂(β − β0)− 2G′
(s)(β − β0), s = 1, . . . , 200, and solve the following

optimization problems

l(s) := inf
β−β0∈∆⋆,

ℓ⋆
(s)

(β−β0)≤0

p′
τ (β − β0) and u(s) := sup

β−β0∈∆⋆,
ℓ⋆
(s)

(β−β0)≤0

p′
τ (β − β0),

where ∆⋆ is constructed as explained in Section 6.1. Finally, Min is the (α1/2)−quantile of {l(s)}Ss=1

andMin is the (1− α1/2)−quantile of {u(s)}Ss=1, where α1 is set to 0.05.

Out-of-sample Uncertainty. In order to quantify the out-of-sample uncertainty from the stochas-
tic error in the post-treatment period, we need to construct the bounds Mout and Mout on the
out-of-sample error eτ (associated with the τ prediction). We employ the non-asymptotic bounds
described in (6.6), assuming that eτ − E[eτ |H ] is sub-Gaussian conditional on H . Then, we take

Mout := E[eτ |H ]−
√

2σ2
H log(2/α2) and Mout := E[eτ |H ] +

√
2σ2

H log(2/α2),
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We set α2 = 0.05, and the conditional mean E[eτ |H ] and the sub-Gaussian parameter σH are
parametrized and estimated by a linear-in-parameters regression of the pre-treatment residuals on
B.

Finally, the prediction intervals for the counterfactual outcome and the treatment effect of interest
are given by[

p′
τ β̂ −Min +Mout; p

′
τ β̂ −Min +Mout

]
and

[
τ̂ +Min −Mout; τ̂ +Min −Mout

]
,

respectively.

Other assumptions. Throughout all our specifications, we maintain the assumptions that (i)
there is no anticipation of the treatment and (ii) A and B form a cointegrated system. When (i)
is relaxed to allow for anticipation results remain qualitatively the same.
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S.8 Robustness Checks

In this Section, we redo the empirical analysis presented in the main paper with five variations: (i)
using a simplex-type constraint in place of the L1-L2 constraint (Section S.8.1); (ii) using a Ridge-
type constraint in place of the L1-L2 constraint (Section S.8.2; (iii) using the investment-to-GDP
ratio as an additional feature (Section S.8.3); (iv) using a placebo treatment date (Section S.8.4;
and (v) leaving one donor out at the time (Section S.8.5).
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S.8.1 Ridge-Type Constraint

TSUS predicted effects in every period after liberalization (τik).

Figure S.1: Time-specific unit-specific (TSUS) predicted effects in every period, τ̂ik.
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Notes: Panel (a): TSUS prediction for every country in each of five periods after treatment. Blue bars report 90%
prediction intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is
quantified using sub-Gaussian bounds. Panel (b): each dot represents the weight that the donor (row) gets in forming
the synthetic control for the treated unit (column). When there is no dot, it means that the unit was not part of the
donor pool for the treated unit in question.
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TAUS predicted effects, averaged over five years (τi·).

Figure S.2: Time-averaged unit-specific (TAUS) predicted effects, averaged over five years, τ̂i·.
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Notes: Panel (a): TAUS prediction for every country averaged over the five periods following treatment (up to the
year 2000). Blue bars report 90% prediction intervals. In-sample uncertainty is quantified using 200 simulations,
whereas out-of-sample uncertainty is quantified using sub-Gaussian bounds. Panel (b): each dot represents the weight
that the donor (row) gets in forming the synthetic control for the treated unit (column). When there is no dot, it
means that the unit was not part of the donor pool for the treated unit in question.
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TSUA predicted effects, averaged over countries that liberalized in each of three waves: before
1987, between 1987 and 1991, and after 1991 (τQ1k, τQ2k, τQ3k).

Figure S.3: Time-specific unit-averaged (TSUA) predicted effects in each period, averaged over three groups
of countries.
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Notes: TSUA prediction in every period after treatment (up to five years), averaged over all countries that liberalized
in each of three waves: before 1987 (Botswana, Gambia, Ghana, and Guinea), between 1987 and 1991 (Benin, Cabo
Verde, Guinea-Bissau, Mali, South Africa, and Uganda), and after 1991 (Burkina Faso, Burundi, Cameroon, Ethiopia,
Ivory Coast, Mozambique, Niger, Tanzania, and Zambia). Blue bars report 90% prediction intervals, whereas blue-
shaded areas report 90% simultaneous prediction intervals. In-sample uncertainty is quantified using 200 simulations,
whereas out-of-sample uncertainty is quantified using sub-Gaussian bounds. Panel (b): each dot represents the weight
that the donor (row) gets in forming the synthetic control for the treated unit (column). When there is no dot, it
means that the unit was not part of the donor pool for the treated unit in question.
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TSUA predicted effects, averaged over all liberalized countries (τEk).

Figure S.4: Time-specific unit-averaged (TSUA) predicted effect, averaged over all treated units, τ̂Ek.
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Notes: Panel (a): TSUA prediction in every period after treatment averaged over all the treated countries. Blue bars
report 90% prediction intervals, whereas blue-shaded areas report 90% simultaneous prediction intervals. In-sample
uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is quantified using sub-Gaussian
bounds. Panel (b): each dot represents the weight that the donor (row) gets in forming the synthetic control for the
treated unit (column). When there is no dot, it means that the unit was not part of the donor pool for the treated
unit in question.
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S.8.2 Simplex-Type Constraint

TSUS predicted effects in every period after liberalization (τik).

Figure S.5: Time-specific unit-specific (TSUS) predicted effects in every period, τ̂ik.
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Notes: Panel (a): TSUS prediction for every country in each of five periods after treatment. Blue bars report 90%
prediction intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is
quantified using sub-Gaussian bounds. Panel (b): each dot represents the weight that the donor (row) gets in forming
the synthetic control for the treated unit (column). When there is no dot, it means that the unit was not part of the
donor pool for the treated unit in question.
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TAUS predicted effects, averaged over five years (τi·).

Figure S.6: Time-averaged unit-specific (TAUS) predicted effects, averaged over five years, τ̂i·.
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Notes: Panel (a): TAUS prediction for every country averaged over the five periods following treatment (up to the
year 2000). Blue bars report 90% prediction intervals. In-sample uncertainty is quantified using 200 simulations,
whereas out-of-sample uncertainty is quantified using sub-Gaussian bounds. Panel (b): each dot represents the weight
that the donor (row) gets in forming the synthetic control for the treated unit (column). When there is no dot, it
means that the unit was not part of the donor pool for the treated unit in question.
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TSUA predicted effects, averaged over countries that liberalized in each of three waves: before
1987, between 1987 and 1991, and after 1991 (τQ1k, τQ2k, τQ3k).

Figure S.7: Time-specific unit-averaged (TSUA) predicted effects in each period, averaged over three groups
of countries.
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Notes: TSUA prediction in every period after treatment (up to five years), averaged over all countries that liberalized
in each of three waves: before 1987 (Botswana, Gambia, Ghana, and Guinea), between 1987 and 1991 (Benin, Cabo
Verde, Guinea-Bissau, Mali, South Africa, and Uganda), and after 1991 (Burkina Faso, Burundi, Cameroon, Ethiopia,
Ivory Coast, Mozambique, Niger, Tanzania, and Zambia). Blue bars report 90% prediction intervals, whereas blue-
shaded areas report 90% simultaneous prediction intervals. In-sample uncertainty is quantified using 200 simulations,
whereas out-of-sample uncertainty is quantified using sub-Gaussian bounds. Panel (b): each dot represents the weight
that the donor (row) gets in forming the synthetic control for the treated unit (column). When there is no dot, it
means that the unit was not part of the donor pool for the treated unit in question.

34



TSUA predicted effects, averaged over all liberalized countries (τEk).

Figure S.8: Time-specific unit-averaged (TSUA) predicted effect, averaged over all treated units, τ̂Ek.
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Benin Bots-
wana

Cabo
Verde

Came-
roon Gambia Ghana Guinea Guinea

Bissau
Ivory
Coast Kenya Mali Niger South

Africa Uganda Zambia

-0
.5 0.

0
0.
5
-0
.5 0.

0
0.
5
-0
.5 0.

0
0.
5
-0
.5 0.

0
0.
5
-0
.5 0.

0
0.
5
-0
.5 0.

0
0.
5
-0
.5 0.

0
0.
5
-0
.5 0.

0
0.
5
-0
.5 0.

0
0.
5
-0
.5 0.

0
0.
5
-0
.5 0.

0
0.
5
-0
.5 0.

0
0.
5
-0
.5 0.

0
0.
5
-0
.5 0.

0
0.
5
-0
.5 0.

0
0.
5

Zimbabwe

Togo

Sierra Leone

Senegal

Rwanda

Nigeria

Malawi

Lesotho

Gabon

Congo

Chad

Angola

Weight

(b) ŵ
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Notes: Panel (a): TSUA prediction in every period after treatment averaged over all the treated countries. Blue bars
report 90% prediction intervals, whereas blue-shaded areas report 90% simultaneous prediction intervals. In-sample
uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is quantified using sub-Gaussian
bounds. Panel (b): each dot represents the weight that the donor (row) gets in forming the synthetic control for the
treated unit (column). When there is no dot, it means that the unit was not part of the donor pool for the treated
unit in question.
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S.8.3 Multiple Features

TSUS predicted effects in every period after liberalization (τik).

Figure S.9: Time-specific unit-specific (TSUS) predicted effects in every period, τ̂ik.
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Notes: Panel (a): TSUS prediction for every country in each of five periods after treatment. Blue bars report 90%
prediction intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is
quantified using sub-Gaussian bounds. Panel (b): each dot represents the weight that the donor (row) gets in forming
the synthetic control for the treated unit (column). When there is no dot, it means that the unit was not part of the
donor pool for the treated unit in question.
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TAUS predicted effects, averaged over five years (τi·).

Figure S.10: Time-averaged unit-specific (TAUS) predicted effects, averaged over five years, τ̂i·.
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Notes: Panel (a): TAUS prediction for every country averaged over the five periods following treatment (up to the
year 2000). Blue bars report 90% prediction intervals. In-sample uncertainty is quantified using 200 simulations,
whereas out-of-sample uncertainty is quantified using sub-Gaussian bounds. Panel (b): each dot represents the weight
that the donor (row) gets in forming the synthetic control for the treated unit (column). When there is no dot, it
means that the unit was not part of the donor pool for the treated unit in question.
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TSUA predicted effects, averaged over countries that liberalized in each of three waves: before
1987, between 1987 and 1991, and after 1991 (τQ1k, τQ2k, τQ3k).

Figure S.11: Time-specific unit-averaged (TSUA) predicted effects in each period, averaged over three
groups of countries.
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-20 -10 0

-1.0

-0.9

-0.8

-0.7

-0.6

years to treatment

(l
og

)
G
D
P

p
er

ca
p
it
a
(U

S
D

th
sd
.)

Treated Synthetic Control

(e) Yit(Ti) and Ŷit(∞)
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Notes: TSUA prediction in every period after treatment (up to five years), averaged over all countries that liberalized
in each of three waves: before 1987 (Botswana, Gambia, Ghana, and Guinea), between 1987 and 1991 (Benin, Cabo
Verde, Guinea-Bissau, Mali, South Africa, and Uganda), and after 1991 (Burkina Faso, Burundi, Cameroon, Ethiopia,
Ivory Coast, Mozambique, Niger, Tanzania, and Zambia). Blue bars report 90% prediction intervals, whereas blue-
shaded areas report 90% simultaneous prediction intervals. In-sample uncertainty is quantified using 200 simulations,
whereas out-of-sample uncertainty is quantified using sub-Gaussian bounds. Panel (b): each dot represents the weight
that the donor (row) gets in forming the synthetic control for the treated unit (column). When there is no dot, it
means that the unit was not part of the donor pool for the treated unit in question.
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TSUA predicted effects, averaged over all liberalized countries (τEk).

Figure S.12: Time-specific unit-averaged (TSUA) predicted effect, averaged over all treated units, τ̂Ek.
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Notes: Panel (a): TSUA prediction in every period after treatment averaged over all the treated countries. Blue bars
report 90% prediction intervals, whereas blue-shaded areas report 90% simultaneous prediction intervals. In-sample
uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is quantified using sub-Gaussian
bounds. Panel (b): each dot represents the weight that the donor (row) gets in forming the synthetic control for the
treated unit (column). When there is no dot, it means that the unit was not part of the donor pool for the treated
unit in question.
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S.8.4 Placebo Treatment Date

In this exercise, we set T̃i = Ti − 11 and conduct the same exercise as in the main text.
TSUS predicted effects in every period after liberalization (τik).

Figure S.13: Time-specific unit-specific (TSUS) predicted effects in every period, τ̂ik.
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Notes: Panel (a): TSUS prediction for every country in each of five periods after treatment. Blue bars report 90%
prediction intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is
quantified using sub-Gaussian bounds. Panel (b): each dot represents the weight that the donor (row) gets in forming
the synthetic control for the treated unit (column). When there is no dot, it means that the unit was not part of the
donor pool for the treated unit in question.
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TAUS predicted effects, averaged over five years (τi·).

Figure S.14: Time-averaged unit-specific (TAUS) predicted effects, averaged over five years, τ̂i·.
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Notes: Panel (a): TAUS prediction for every country averaged over the five periods following treatment (up to the
year 2000). Blue bars report 90% prediction intervals. In-sample uncertainty is quantified using 200 simulations,
whereas out-of-sample uncertainty is quantified using sub-Gaussian bounds. Panel (b): each dot represents the weight
that the donor (row) gets in forming the synthetic control for the treated unit (column). When there is no dot, it
means that the unit was not part of the donor pool for the treated unit in question.
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TSUA predicted effects, averaged over countries that liberalized in each of three waves: before
1987, between 1987 and 1991, and after 1991 (τQ1k, τQ2k, τQ3k).

Figure S.15: Time-specific unit-averaged (TSUA) predicted effects in each period, averaged over three
groups of countries.
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Notes: TSUA prediction in every period after treatment (up to five years), averaged over all countries that liberalized
in each of three waves: before 1987 (Botswana, Gambia, Ghana, and Guinea), between 1987 and 1991 (Benin, Cabo
Verde, Guinea-Bissau, Mali, South Africa, and Uganda), and after 1991 (Burkina Faso, Burundi, Cameroon, Ethiopia,
Ivory Coast, Mozambique, Niger, Tanzania, and Zambia). Blue bars report 90% prediction intervals, whereas blue-
shaded areas report 90% simultaneous prediction intervals. In-sample uncertainty is quantified using 200 simulations,
whereas out-of-sample uncertainty is quantified using sub-Gaussian bounds. Panel (b): each dot represents the weight
that the donor (row) gets in forming the synthetic control for the treated unit (column). When there is no dot, it
means that the unit was not part of the donor pool for the treated unit in question.
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TSUA predicted effects, averaged over all liberalized countries (τEk).

Figure S.16: Time-specific unit-averaged (TSUA) predicted effect, averaged over all treated units, τ̂Ek.
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Notes: Panel (a): TSUA prediction in every period after treatment averaged over all the treated countries. Blue bars
report 90% prediction intervals, whereas blue-shaded areas report 90% simultaneous prediction intervals. In-sample
uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is quantified using sub-Gaussian
bounds. Panel (b): each dot represents the weight that the donor (row) gets in forming the synthetic control for the
treated unit (column). When there is no dot, it means that the unit was not part of the donor pool for the treated
unit in question.
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S.8.5 Leave-One-Donor-Out

In this exercise, we remove with replacement one donor at a time from the donor pool and recompute
our six predictands of interest.
TSUS predicted effects in every period after liberalization (τik).

Figure S.17: Time-specific unit-specific (TSUS) predicted effects in every period, τ̂ik.
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Notes: The black solid line depicts the TSUS prediction for every country in the pre-treatment period and each of
the five periods after treatment. Gray-shaded areas highlight the area between the lower and upper value of τ̂it when
leaving one of the donors out at a time.

44



TAUS predicted effects, averaged over five years (τi·).

Figure S.18: Time-averaged unit-specific (TAUS) predicted effects, averaged over five years, τ̂i·.
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Figure S.19: Yit(Ti) and Ŷit(∞)

Notes: The black solid line depicts the TSUS prediction for every country in the pre-treatment period and each of
the five periods after treatment. Black vertical bars highlight the area between the lower and upper value of τ̂·t when
leaving one of the donors out at a time.
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TSUA predicted effects, averaged over countries that liberalized in each of three waves: before
1987, between 1987 and 1991, and after 1991 (τQ1k, τQ2k, τQ3k).
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Figure S.20: Time-specific unit-averaged (TSUA) predicted effects in each period, averaged over three
groups of countries.
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Notes: The black solid line depicts the TSUA prediction in every period before and after treatment (up to five
years), averaged over all countries that liberalized in each of three waves: before 1987 (Botswana, Gambia, Ghana,
and Guinea), between 1987 and 1991 (Benin, Cabo Verde, Guinea-Bissau, Mali, South Africa, and Uganda), and
after 1991 (Burkina Faso, Burundi, Cameroon, Ethiopia, Ivory Coast, Mozambique, Niger, Tanzania, and Zambia).
Gray-shaded areas highlight the area between the lower and upper value of τ̂Qjt, j = 1, 2, 3, when leaving one of the
donors out at a time.
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TSUA predicted effects, averaged over all liberalized countries (τEk).

Figure S.21: Time-specific unit-averaged (TSUA) predicted effect, averaged over all treated units, τ̂Ek.
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Notes: The black solid line depicts the TSUA prediction in every period before and after treatment averaged over all
the treated countries. Gray-shaded areas highlight the area between the lower and upper value of τ̂Et when leaving
one of the donors out at a time.
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