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Teaser

Proper use of covariates in Regression Discontinuity designs can enhance empirical scientific dis-

coveries and evidence-based policy decisions.

Elevator Pitch

It is common practice to incorporate additional covariates in empirical economics. In the context

of Regression Discontinuity (RD) designs, covariate adjustment plays multiple roles, making it

essential to understand its impact on analysis and conclusions. Typically implemented via local least

squares regressions, covariate adjustment can serve three main distinct purposes: (i) improving the

efficiency of RD average causal effect estimators, (ii) learning about heterogeneous RD policy effects,

and (iii) changing the RD parameter of interest. Unfortunately, “fixing” a “broken” RD design

through covariate adjustment often requires implausibly strong assumptions about the econometric

model.
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Key Findings

• Pros

+ Precision of RD causal effect estimators can be improved by correctly using pre-intervention

covariates.

+ When properly implemented, covariate adjustment can uncover interesting heterogeneous

RD causal effects.

+ Various other RD policy effects of interest can be learned by correctly incorporating co-

variates in the analysis.

• Cons

− Understanding empirical results based on covariate adjustment RD estimation requires

careful consideration.

− Covariate adjustment cannot restore the validity of an RD design without strong paramet-

ric assumptions.

− Empirical work leveraging covariates in RD designs is often undisciplined and ad-hoc,

potentially leading to invalid empirical findings and policy prescriptions.
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Authors’ main message

When applied correctly, covariate adjustment in RD designs can significantly enhance empirical

analysis and strengthen policy conclusions. However, the use of covariates across RD studies

is often inconsistent and ad-hoc, undermining both the credibility and replicability of findings.

Adopting best methodological practices for covariate adjustment in RD designs can improve effi-

ciency and support rigorous heterogeneity analysis. Additionally, pre-intervention covariates can

be leveraged to modify the RD parameter of interest, though this requires adopting additional,

sometimes stringent, modeling assumptions.

Motivation

In program evaluation, a primary goal is to determine the causal effect of a policy on an outcome.

Among the numerous experimental and non-experimental research designs available in the liter-

ature (see [1] and references therein), the RD design is widely used in empirical economics. A

landmark example of its application is found in [30], which examines the causal impact of the U.S.

federal anti-poverty program Head Start on child mortality. The study leveraged a discontinuity

in program funding that occurred in 1965, when Head Start was first implemented. To ensure

adequate representation of the nation’s poorest communities in a nationwide grant competition for

program funds, the federal government provided assistance to the 300 poorest U.S. counties to help

them prepare and submit funding applications. This support resulted in a surge of participation

and funding rates among these counties, creating a discontinuity at the 300th poorest county, and

thus enabled the use of an RD design for policy evaluation. Using flexible parametric methods, [30]

found that access to increased Head Start funding led to a significant reduction in child mortality

rates between 1973 and 1983 among children aged five to nine, specifically for causes impacted by

the program’s health services. The reported decrease in mortality was substantial, from approxi-

mately 3.2 to 1.9 deaths per 100, 000 children. More recently, [19] re-examined the Head Start data

using modern RD methods (see [18] and references therein), and showed that the reduction in child

mortality is robust to different assumptions and estimation strategies.

The Head Start application serves as a prototypical empirical example of the canonical (sharp)

RD design, in which each unit is assigned a score, and treatment is given to all units whose score

exceeds a fixed cutoff, while those below the cutoff receive no treatment. Specifically, in the Head

Start context, the units are counties, the score is the poverty index, and the cutoff is the poverty level

of the 300th poorest U.S. county (approximately equal to 59.2). The core identification strategy

hinges on the sudden shift in the likelihood of receiving treatment at the cutoff, which allows for

comparing units just above and below the threshold to estimate the causal effect of the treatment.

In practice, local least squares linear regression employing only those units whose scores are close

to the cutoff point determining policy assignment is often used to estimate the RD average causal

effect at the cutoff (see [13] and [14] for comprehensive practical introduction).
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The Head Start data employed by [30] also included pre-intervention covariates and other post-

intervention outcomes. The authors, and later [19], utilized these variables for falsification of the

RD design: it is common practice to verify that the RD causal effect is statistically indistinguishable

from zero when the outcome variable is known to be unaffected by the intervention. Furthermore,

pre-intervention covariates can be leveraged to improve the precision of estimating the average

causal effect at the cutoff, as well as to explore treatment effect heterogeneity. In this article,

we discuss the role of covariate adjustment in RD designs and demonstrate their application in

the context of the Head Start study. Following [9], we leverage nine pre-intervention covariates:

population, population between age 14 and 17, population between age 5 and 34, population with age

25+, % attending school between age 14 and 17, % attending school between age 5 and 34, % of

urban areas, % of urban areas, and % of Black population. The eight covariates excluding population

are only used for improving estimation efficiency, and thus we refer to them as “covariates for

efficiency”. The pre-intervention covariate population will be used for either improving estimation

efficiency or heterogeneity analysis. This application cannot be used to demonstrate empirically the

other possible roles of covariate adjustment in RD designs, which nonetheless we also briefly discuss

below. Finally, we offer practical guidance and briefly address other empirical and methodological

uses of covariates in RD-based research. See, in particular, [15] for a recent methodological overview

and further references. General-purpose software and replication files are available at https:

//rdpackages.github.io/.

Discussion of pros and cons

The RD design was introduced by [35] in 1960, but it only began to be recognized as a leading

research design for observational studies forty years later: it was first formalized by [25] from a

continuity-based (local regression) perspective, and later by [12] from a local-randomization (exper-

imental) perspective. In empirical economics, the former conceptual perspective is often adopted

because it justifies a local least squares regression analysis. While a wealth of methodological

approaches are already available for the analysis and interpretation of RD designs, the role of co-

variates in particular remains an active area of methodological research. There is still no consensus

on how to leverage covariates in RD applications among practitioners, a fact that has led to differ-

ent valid (and invalid) empirical approaches, which can hamper the transparency and replicability

of the empirical findings and policy recommendations.

Employing the Head Start application, we discuss the two main distinct roles of covariate ad-

justment in RD designs: for improving efficiency and for heterogeneity analysis. We also provide

a unified framework to discipline practice leveraging covariates in empirical work. Moreover, we

review other roles that covariates can take in RD applications conceptually, and caution against

invalid practices sometimes found in the empirical literature.
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Leveraging Covariates for Efficiency

Using the continuity-based framework, [9] first studied and formalized the role of covariate adjust-

ment for efficiency purposes in RD designs. Their main goal was to provide an easy-to-interpret

and easy-to-implement methodology to incorporate covariates in the otherwise canonical local lin-

ear regression approach for estimation of the (sharp) RD treatment effect [10]. Building on the

standard analysis of experiments, the goal was not to change the parameter of interest but rather

to improve the statistical precision in estimating the canonical RD average treatment effect at the

cutoff.

We illustrate the main idea using the Head Start application. Figure 1(a) presents an RD

Plot [11] employing a global linear regression, which suggests a sizable RD treatment effect. The

first column in Table 1, labeled “canonical”, presents a modern implementation of the RD design

originally studied in [30]. The estimated policy effect is a reduction of 2.41pp in child mortality

among those U.S. counties that were offered Head Start, which is statistically significant at the

95% conventional level when using the robust bias-corrected statistical inference approach of [10].

The estimated RD treatment effect is highly statistically significant and represents a roughly 80%

reduction in child mortality relative to the average mortality rate among control counties. This

classical empirical finding is illustrated using a local RD Plot in Figure 1(b).

A key insight from [9] is that, to increase estimation efficiency, pre-intervention covariates should

be incorporated with a restricted, common parameter across both control and treatment groups to

obtain a consistent and more precise estimator of the canonical (sharp) RD treatment effect, under

minimal identification assumptions and with low misspecification bias. A local regression model

with full interactions between treatment assignment and pre-intervention covariates would require

demeaning the covariates, thereby increasing the smoothing bias and hence reducing the precision

of the RD estimator: for example, the corresponding mean square error (MSE) optimal bandwidth

would be smaller than the MSE-optimal bandwidth proposed by [9], which in turn would lead to

RD estimates with a larger variance on average.

The last two columns in Table 1 correspond to the approach proposed by [9] when either the eight

covariates for efficiency are included in the estimation, or all nine pre-intervention covariates are

incorporated in the analysis. The second column in Table 1, labeled “with covariates for efficiency”,

reports an estimated policy effect corresponding to a reduction of 2.53pp in child mortality with an

interval length reduction of about 3%, while the last column reports a reduction of 2.51pp in child

mortality with a slightly larger interval length reduction. All these estimated effects are highly

statistically significant, and quite similar across each other in magnitude. Notice that the models

are nested: the first column does not include covariate adjustment, the next column adds eight

covariates in the estimation procedure, and then the last column includes one additional covariate

for efficiency purposes (population). The last column corresponds to the specification used in [9].

The Head Start application highlights some important empirical and methodological regulari-

ties for the role of covariate adjustment for efficiency purposes in RD designs. First, and perhaps
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most importantly, the point estimates should not change from a statistical (and hence substan-

tive) perspective. Second, the bandwidth employed should change to account for the additional

covariates entering the estimation procedure. Third, the average length of the confidence intervals

should decrease as more relevant pre-intervention covariates are included in the estimation. These

implications are a consequence of properly employing pre-intervention covariates in modern RD

estimation and inference. Importantly, it is always good practice to check that the covariates used

are indeed unaffected by the policy: this is often done by producing RD plots and conventional RD

estimates using the pre-intervention covariate as an outcome. For an example, see our companion

replication files for the analog of Figure 1 and the first column in Table 1 using population as the

outcome variable.

A limitation of leveraging covariates for efficiency is related to p-hacking, that is, an adversarial

researcher could exploit the presence of many pre-intervention covariates to isolate the one local

least squares regression specification that delivers statistically significant results, disregarding the

fact that many regression models were fitted during the search process. This problem is not

specific to RD designs and is fortunately mitigated by noting that the point estimates obtained

from the canonical and the covariate-adjusted models should be similar to begin with. Thus,

researchers should always report both estimates, canonical and covariate-adjusted, together with

their accompanying robust bias-corrected statistical inference results. See Table 1 for one example.

The literature on covariate adjustment for efficiency improvements in RD designs has progressed

rapidly in recent years. Two interesting, recent contributions are [4] and [31]. The first paper

develops high-dimensional penalization methods to incorporate “many” covariates into RD esti-

mation and inference, which can be used to remove the aforementioned concerns regarding model

specification search (p-hacking). The second paper considers a local empirical likelihood approach,

and also presents improved methodological results following [9].

Leveraging Covariates for Heterogeneity

The second main role of covariates in the RD design is for heterogeneity analysis. In this case, the

pre-intervention covariates change the parameter of interest and thus play a different substantive

role: the goal is to learn an RD treatment effect for each value of the covariates. As a result,

estimation and inference methods need to be different from those discussed in the preceding section,

which has led to the proliferation of applied approaches to leverage covariates for heterogeneity

analysis in RD designs. Due to the curse of dimensionality, it is often the case that empirical work

focuses on heterogeneity analysis one covariate at the time. Thus, the two most common empirical

approaches are (i) to subset the data according to a discrete covariate, or otherwise discretized

continuous covariate, and (ii) to incorporate a continuous covariate via joint local linear regression

estimation with interactions between the treatment assignment variable and the covariate.

Perhaps surprisingly, there is only a handful of papers studying the methodological aspects

of covariate adjustment for heterogeneity analysis in RD designs. [26] propose hypothesis testing
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methods to determine whether there is heterogeneity underlying the canonical RD treatment effect,

[34] and [2] discuss machine learning methods for estimating heterogeneous RD treatment effects

when many continuous covariates are available, and [7] studies identification of weighted average

treatment effects. None of these papers, however, develop estimation and inference methods based

on the most common empirical practice for heterogeneity analysis in RD designs. [8] is the first

paper to study the most common empirical practice based on estimation and inference via local

least squares regressions with interactions.

We illustrate how to incorporate a covariate to conduct valid heterogeneity analysis using the

Head Start data, following the methods recommended by [8]. To simplify the discussion, we only

study heterogeneous RD treatment effects for small and large counties as determined by their

population size: we discretize population into a binary variable indicating whether a county has at

least 10k residents (henceforth, defined “large” counties), and then estimate the (conditional) RD

treatment effects for each of the two subgroups with and without covariate adjustments for efficiency

using the other eight pre-intervention covariates. Before starting with the empirical analysis, we

test whether the probability of being a large county is continuous at the cutoff, an important

empirical falsification test. We estimate the RD effect using the indicator for large counties as the

outcome and find an estimated effect of 0.035 with a p-value of 0.704. The replication files give

details, and also produce the corresponding RD Plot.

To begin the heterogeneity analysis, Figure 2(a) presents a global RD Plot for the two subgroups

with linear regressions. The plot suggests a more sizable effect for the large counties when com-

pared to small counties. The first two columns in Table 2 correspond to the heterogeneous RD

analysis. The point estimates for the two subgroups are similar, but the RD treatment effect is only

statistically significant for large counties. Specifically, it is found that Head Start decreases child

mortality among highly populated counties by roughly 70% relative to the average mortality rate

of highly populated control counties. Figure 2(b) gives a local RD Plot depicting these empirical

findings.

The last two columns in Table 2 present a heterogeneous RD analysis leveraging the other pre-

intervention covariates for efficiency. In this specific illustration, adding the other available covari-

ates to improve precision does not help much. This is an empirical example where the additional

covariates are likely to be uncorrelated with the treatment within each subgroup, thereby not of-

fering noticeable efficiency improvements. Furthermore, in this application studying heterogeneous

RD treatment effects leads to relatively small sample sizes, which calls for extra care in the analysis

and interpretation of the results.

The Head Start application showcases one instance of heterogeneity analysis in RD designs

where the findings indicate statistically significant policy effects for a particular subpopulation

(largely populated counties). It also demonstrates an important limitation often encountered when

estimating heterogeneous treatment effects: sample sizes are reduced because subpopulations are

considered, hence leading to less precise policy estimates.
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Leveraging Covariates for Other Purposes

Going beyond efficiency improvements and heterogeneity analysis, covariates have been used for

other goals in RD designs. We overview these goals and provide further references to the literature.

These methods cannot be illustrated using the Head Start application because they require specific

data structure, or other departures beyond the canonical RD design setup, to be implemented.

Pre-intervention covariates can enhance RD designs by addressing issues like missing data, mea-

surement error, and incorporating prior information via Bayesian methods. Measurement error in

the RD running variable is a common concern, and recent approaches use covariates for correc-

tion [32, 5, 21, and references therein]. Under the assumption of missing-at-random, imputation

methods can be applied directly within the local randomization framework. Bayesian methods

also offer a distinct approach leveraging covariates to inform priors, or model distributions flexibly.

For instance, prior experimental data has been used to inform Bayesian priors in RD studies [23],

while principal stratification has been applied to estimate certain average treatment effects [20].

Although not yet widely adopted, these methods illustrate diverse roles for covariate adjustment

in RD applications, primarily to refine estimation without altering the treatment effect parameter

of interest.

Covariate adjustments in RD designs are also used to identify additional parameters of interest,

such as those for certain subpopulations or for extrapolating treatment effects away from the cutoff.

For example, in some RD designs, covariates define new subpopulations through varying cutoffs, as

in Multi-Cutoff RD designs introduced by [16]. This approach explores heterogeneity by analyzing

RD effects separately for each subgroup defined by its cutoff, which can also be aggregated through

normalization and pooling under additional assumptions. These ideas are somewhat similar, but

often conceptually distinct, from those related to heterogeneity analysis based on pre-intervention

covariates as discussed previously. Similarly, [6] use treatment dosage changes across multiple

cutoffs to explore counterfactual policies, and [17] define effects for subpopulations exposed to

different cutoffs, both facilitating RD treatment effect extrapolation. Furthermore, in RD designs

spanning multiple periods, treatment confounding can occur in one period but not another. The

“differences in discontinuities” design of [24] estimates effects by comparing RD effects across

periods, leveraging assumptions akin to parallel trends for unobservables across time. More recently,

[27] studied dynamic RD designs where time plays an important role as the key additional covariate

determining different treatment regimes.

When multiple cutoffs or periods are unavailable, extrapolation can still rely on auxiliary co-

variates. [3] introduce a conditional independence assumption that permits extrapolation across

the running variable’s full support, while in geographic RD designs [29], assumptions focus on

neighborhoods near geographic boundaries. For instance, [28] explore strategic location choices,

imposing conditional independence within boundary neighborhoods (a local rather conditional in-

dependence assumption). Covariates also enhance extrapolation in other ways. [36] augment RD

designs with exogenous outcome measures to estimate treatment effects beyond the cutoff under
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suitable assumptions about outcome regression functions. See [17] for more discussion.

The references reviewed so far showcase a rich literature demonstrating how covariates in RD

designs expand the scope of analysis by defining new parameters for subpopulations or treatment

effects. These covariates may be inherent to the RD setup, such as multiple cutoffs or periods, or

external, requiring separate collection, such as auxiliary characteristics or outcomes. Regardless,

they can often be leveraged to improve scientific discoveries and evidence-based policy decisions.

Finally, it is sometimes claimed in the RD literature that covariates can be leveraged to “fix” a

“broken” design. The rationale for adjusting covariate imbalances in RD designs draws on an anal-

ogy with flawed randomized experiments; settings where noticeable disparities in pre-intervention

covariates arise, either due to defective randomization or random chance. However, RD designs

present an important added complexity: lack of common support, which necessarily requires non-

trivial extrapolation. This observation has prompted some researchers to employ covariate adjust-

ment techniques to address shortcomings in the identification of canonical RD treatment effects.

In the literature, RD analyses sometimes include fixed effects or other covariate adjustments, typ-

ically implemented as linearly additive regression terms in a (local) polynomial regression frame-

work. Methodological advancements have proposed alternative approaches to manage covariate

imbalances, such as multi-step non-parametric regression [22] and inverse probability weighting

[33]. These techniques, developed within the continuity-based RD framework, aim to address cases

where the conditional expectations of covariates given the running variable exhibit discontinuities

near the cutoff, reflecting imbalances. As a result, they necessarily change the estimand.

Limitations and gaps

The RD design is a well-established methodology for program evaluation and causal inference, sup-

ported by numerous falsification tests and robustness checks to assess its validity [1, 18]. However,

several important caveats should be noted. First, the policy effects identified by the RD design

are “local” in nature, meaning they pertain only to units near the cutoff, rather than the entire

population. Second, when pre-intervention covariates are included in an RD design, careful in-

terpretation is required, and researchers must clearly articulate their intentions regarding these

covariates. Third, examining heterogeneity in policy effects may significantly reduce the sample

size available for analysis, which can affect statistical power. Finally, covariate adjustment cannot

“fix” an RD design without making strong assumptions, and often changing the estimand.

Summary and policy advice

We examined the different roles that pre-treatment covariates can play in RD designs: enhancing

the precision of estimates, exploring heterogeneity in treatment effects, and more broadly changing

the estimand. We provided a detailed discussion of each of these roles and illustrated the first

9



two by revisiting a classic empirical study in the RD literature. Additionally, we emphasized the

importance of clearly stating the purpose for including pre-treatment covariates in the analysis, as

this clarifies the researcher’s goal and facilitates the interpretation of empirical findings. Finally,

we recommend always conducting empirical falsification testing to enhance the credibility of the

findings, and also rely on well-developed methods for leveraging covariates in the analysis. Relaying

on the empirical methods reviewed in this article will help replicability and comparability across

studies.
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Figures

Figure 1: Head Start Canonical RD Average Treatment Effect

(a) Global RD Plot (b) Local RD Plot

Notes: In all cases, we use a triangular kernel, employ a polynomial of degree 1 in the running variable, and equate
the main bandwidth and the auxiliary bias bandwidth. No covariates are included for efficiency purposes. Dots
represent averages within equally-spaced bins, solid lines represent separate linear fits on each side of the cutoff, and
vertical dashed lines (when displayed) delimit the estimation sample of length twice the optimal MSE bandwidth.
Sample sizes in panel (a) are n− = 2504 and n+ = 300, whereas in panel (b) N− = 234 and N+ = 182.

Figure 2: Head Start Heterogeneous RD Average Treatment Effects (population)

(a) Heterogeneous RD (global) (b) Heterogeneous RD (local)

Notes: In all cases, we use a triangular kernel, use a polynomial of degree 1 in the running variable, and equate the
main bandwidth and the auxiliary bias bandwidth. No covariates are included for efficiency. Dots represent averages
within equally-spaced bins, solid lines represent separate linear fits on each side of the cutoff, and vertical dashed
lines (when displayed) delimit the estimation sample of length twice the optimal MSE bandwidth. Sample sizes for
small counties (population < 10k) in panel (a) are n− = 685 and n+ = 101, whereas in panel (b) N− = 70 and
N+ = 57. Sample sizes for large counties (population ≥ 10k) in panel (a) are n− = 1819 and n+ = 199, whereas in
panel (b) N− = 162 and N+ = 126.
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Tables

Table 1: Head Start Canonical RD Average Treatment Effect

type of RD canonical with covariates for efficiency with all covariates

τ̂ −2.41 −2.53 −2.51

95% RCI [−6.41,−1.09] [−6.65,−1.5] [−6.536,−1.4]

CI length change (%) - −3.25 −3.53

p-value 0.006 0.002 0.002

h 6.808 6.765 6.986

N− |N+ 234 | 180 231 | 179 242 | 184
% treatment effect −78.56 −82.2 −81.5

Notes: In all cases, we use a triangular kernel, use a polynomial of degree 1 in the running variable, equate the
estimation bandwidth and the bandwidth to estimate the bias, and use nearest neighbor heteroskedasticity-robust
variance estimators. Column 2 contains results for the case in which no additional covariates are added to achieve
efficiency gains; Column 3 shows the same statistics when 8 covariates are added (population between 14 and 17,
population between 5 and 34, population with age 25+, % attending school between 14 and 17, % attending school
between 5 and 34, % of urban areas, % of Black population); Column 4 also adds population as a covariate for
efficiency gains. The rows report in order: the RD estimator; the bias-corrected 95% robust confidence interval;
the percentage reduction in the RCI compared to the case without covariates; the p-value for the null that the true
coefficient is 0; the optimal bandwidth; and the effective sample size to the left and right of the cutoff.

Table 2: Head Start Heterogeneous RD Average Treatment Effects

type of RD canonical with covariates for efficiency

population <10k population ≥10k population <10k population ≥10k

τ̂(z) −2.99 −2.26 −4.56 −2.48

95% RCI [−11.49, 2.01] [−6.1,−0.78] [−9.56, 2.58] [−6.65,−1.3]

CI length change (%) - - −10.15 0.33

p-value 0.169 0.011 0.259 0.004

h 6.377 6.881 5.049 6.294

N− |N+ 70 | 55 162 | 126 56 | 45 145 | 116
% treatment effect −103.11 −70.33 −157.88 −76.4

Notes: Panel A reports the results of the heterogeneity analysis obtained using two separate RD designs for the small
and large counties. Panel B shows similar statistics using a single RD. Columns 2 and 3 contain results for the case
where no additional covariates are added to achieve efficiency gains, whereas Panel (b) shows the same statistics when
8 covariates are added (population between 14 and 17, population between 5 and 34, population with age 25+, %
attending school between 14 and 17, % attending school between 5 and 34, % of urban areas, % of Black population).
Within each panel, the table shows in order: the RD estimator; the bias-corrected 95% robust confidence interval;
the percentage reduction in the RCI compared to the case without covariates; the p-value for the null that the true
coefficient is 0; the optimal bandwidth; and the effective sample size to the left and right of the cutoff. In all cases, we
use a triangular kernel, use a polynomial of degree 1 in the running variable, and equate the estimation bandwidth
and the bandwidth to estimate the bias.
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[22] Markus Frölich and Martin Huber. Including covariates in the regression discontinuity design.

Journal of Business & Economic Statistics, 37(4):736–748, 2019.

[23] Sara Geneletti, Aidan G O’Keeffe, Linda D Sharples, Sylvia Richardson, and Gianluca Baio.

Bayesian regression discontinuity designs: Incorporating clinical knowledge in the causal anal-

ysis of primary care data. Statistics in medicine, 34(15):2334–2352, 2015.

[24] Veronica Grembi, Tommaso Nannicini, and Ugo Troiano. Do fiscal rules matter? American

Economic Journal: Applied Economics, 8(3):1–30, 2016.

[25] Jinyong Hahn, Petra Todd, and Wilbert van der Klaauw. Identification and estimation of

treatment effects with a regression-discontinuity design. Econometrica, 69(1):201–209, 2001.

[26] Yu-Chin Hsu and Shu Shen. Testing treatment effect heterogeneity in regression discontinuity

designs. Journal of Econometrics, 208(2):468–486, 2019.

14



[27] Yu-Chin Hsu and Shu Shen. Dynamic regression discontinuity under treatment effect hetero-

geneity. Quantitative Economics, 15(4):1035–1064, 2024.

[28] Luke Keele, Rocio Titiunik, and Jose R Zubizarreta. Enhancing a geographic regression dis-

continuity design through matching to estimate the effect of ballot initiatives on voter turnout.

Journal of the Royal Statistical Society. Series A (Statistics in Society), 178(1):223–239, 2015.

[29] Luke J Keele and Rocio Titiunik. Geographic boundaries as regression discontinuities. Political

Analysis, 23(1):127–155, 2015.

[30] Jens Ludwig and Douglas L. Miller. Does head start improve children’s life chances? evidence

from a regression discontinuity design. Quarterly Journal of Economics, 122(1):159–208, 2007.

[31] Jun Ma and Zhengfei Yu. Empirical likelihood covariate adjustment for regression discontinuity

designs. arXiv preprint arXiv:2008.09263, 2024.

[32] Zhuan Pei and Yi Shen. The devil is in the tails: Regression discontinuity design with mea-

surement error in the assignment variable. In Matias D. Cattaneo and Juan Carlos Escanciano,

editors, Regression Discontinuity Designs: Theory and Applications (Advances in Economet-

rics, volume 38), pages 455–502. Emerald Group Publishing, 2017.

[33] Sida Peng and Yang Ning. Regression discontinuity design under self-selection. In International

Conference on Artificial Intelligence and Statistics, pages 118–126. PMLR, 2021.
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