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1 Measure theory

We will spend the first few lectures of the course discussing measure theory. Measure
theory helps unify discrete and continuous random variables and with treating mixed
cases. It also helps for distributions in Rn.

1.1 Sigma algebras

Definition (Closure). A collection C of subsets of E is closed under intersection if ∀A, B ∈ C,
then A ∩ B ∈ C.

Definition (Algebra). Let E be a set and E be a non-empty collection of subsets. E is an algebra
if

1. ∅ ∈ E
2. Closed under complements: A ∈ E =⇒ Ac ∈ E
3. Closed under finite unions: A, B ∈ E =⇒ A ∪ B ∈ E

Definition (Sigma-Algebra). Let E be a set and E be a non-empty collection of subsets. E is a
sigma-algebra if

1. ∅ ∈ E
2. Closed under complements: A ∈ E =⇒ Ac ∈ E
3. Closed under countable unions: A1, A2, . . . ∈ E =⇒ ∪∞

i=1 Ai ∈ E

Proposition (De Morgan’s Law). ∩i∈I Ai =
(
∪i∈I Ac

i
)c.

Note. Statements about countable unions are implied by statements about countable intersections.

Definition (Trivial σ-algebra). E = {∅, E} is called the trivial sigma-algebra.

Definition (Discrete σ-algebra). E =
{

collection of all subsets of E ≡ 2E
}

is called the discrete
sigma-algebra.

Property (Intersections and unions of σ-algebras). A few properties left as homework.
1. Intersections of an arbitrary (countable or uncountable) family of sigma-algebras on E are

also sigma-algebras on E.
2. The union is not necessarily a sigma-algebra.
3. An arbitrary collection C of subsets of E is not necessarily a sigma-algebra.
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1.2 Measurable spaces 4

Definition (Generated σ−algebra). Given an arbitrary collection C of subsets of E. Consider all
σ-algebras on E that contain C. Take the intersection of all these. The smallest σ-algebra containing
C is the σ-algebra generated by C denoted by σ (C). Denote E1 ∨ E2 ≡ σ (E1 ∪ E2).

Definition (Topological space). A topological space is an ordered pair (X, ξ) such that:
• ∅ and X belong to ξ

• ξ is closed under (finite and infinite) union
• ξ is closed under finite intersection

Members of ξ are called open sets and ξ is a topology on X.

Definition (Borel sigma-algebra). If E is a topological space, then the sigma-algebra generated
by open sets is called the Borel sigma-algebra.

Note. We can generate the Borel sigma-algebra by using all sorts of intervals on the real line, i.e.
closed, open, half-closed and half-open.

Definition (Monotone class). A monotone class is a collection of sets M, which is closed
under countable monotone union and intersections i.e. if A1, . . . ∈ M and A1 ⊆ A2 ⊆ . . . , then
∪∞

n=1 An ∈ M.

Theorem (Monotone class). Let E be an algebra on E. LetM =M (E) be the smallest monotone
class containing E. ThenM = σ (E).

1.2 Measurable spaces

Definition (Measurable space). A measurable space is (E, E), where E is a set and E is a
sigma-algebra on E. The elements of E are called measurable sets.

Definition (Measure). Let (E, E) be a measurable space. A measure on (E, E) is a mapping
µ : E → R+ such that

1. µ (∅) = 0.
2. µ

(
∪∞

n=1 An
)

= ∑∞
n=1 µ (An) for every countable collection of pairwise disjoint sets {An}∞

n=1.

Example (Measures). Below are a few common examples.

1 MEASURE THEORY
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1. Dirac measure. Let A ∈ E , x ∈ E, and (E, E) be a measurable space. Then

δx (A) ≡

1 if x ∈ A

0 if x /∈ A

2. Counting measure. Fix D ⊆ E. Let A ∈ E , ν ≡ # points in A ∪D. When D is countable,
then

ν (A) = ∑
x∈D

δx (A)

In words, the counting measure on D assigns mass one to all those point in D that are also
in A. Of course it might be that D = E.

3. Discrete measure: Let D ⊆ E countable.

µ (A) ≡ ∑
x∈D

m (x) δx (A) , A ∈ E

where m (x) ≥ 0 is the “mass” at x.
4. Lebesgue measure: A measure µ on (R, BR) is called the Lebesgue measure if for every

interval A, µ (A) is the length of the interval. The Lebesgue measure on R2 is the area
measure. The Lebesgue measure on R3 is the volume measure.

Note. The notation An ↗ A means that {An}n is an increasing sequence of sets in the sense that
A1 ⊆ A2 ⊆ A3 · · · and we define A ≡ ∪∞

j=1 := limn→∞ ∪n
j=1 Aj. We use An ↘ A for a decreasing

sequence of sets.

Property (Measures). Below are a few common properties.
1. Finite additivity. A ∩ B = ∅ =⇒ µ (A ∪ B) = µ (A) + µ (B)

Proof. Take the countable additivity property of measures and let {A, B, ∅, ∅, . . .},
such that A ∩ B = ∅. Then

µ (A ∪ B) = µ (A ∪ B ∪∅ ∪ · · ·) = µ (A) + µ (B) + µ (∅) + · · · = µ (A) + µ (B)

2. Monotonicity. A ⊆ B =⇒ µ (A) ≤ µ (B).

Proof. First, note that B \ A = {x ∈ E : x ∈ B ∧ x 6∈ A} = {x ∈ E : x ∈ B ∧ x ∈ Ac} =
B ∩ Ac. Note that if A ⊆ B, then

B = B ∩ E = B ∩ (A ∪ Ac) = (B ∩ A) ∪ (B ∩ Ac) = A ∩ B \ A

1 MEASURE THEORY
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and A∩ B \A are by definition disjoint. Thus, µ (B) = µ (A)+ µ
(

B \ A
)
≥ µ (A).

3. Sequential continuity. An ↗ A implies µ (An) ↘ µ (A) and An ↘ A implies
µ (An)↘ µ (A)

Proof. Let B1 ≡ A1, B2 ≡ A2 \ A1, B3 ≡ A3 \ A2, . . ., hence An = ∪n
i=1Bi and {Bi}n

i=1

are pairwise disjoint and all E−measurable. Then

lim
n→∞

µ (An) = lim
n→∞

(
µ
(
∪n

i=1Bi
))

= lim
n→∞

n

∑
i=1

µ (Bi) (finite additivity)

=
∞

∑
i=1

µ (Bi) = µ
(
∪∞

i=1Bi
)

= µ (A) (sigma-additivity)

4. Boole’s inequality (Union bound). Take any sequence of sets {An}n, then

µ (∪∞
n=1 An) ≤

∞

∑
n=1

µ (An)

Proof. For two sets A, B,

µ (A ∪ B) = µ
(

A ∪
(

B \ A
))

= µ (A) + µ
(

B \ A
)
≤ µ (A) + µ (B) ,

where the second line follows from finite finite additivity. Next, use induction to
show µ

(
∪n

i=1 Ai
)
≤ ∑n

i=1 µ (Ai). Finally take n→ ∞.

5. Arithmetic properties. Let µ, ν, µj, ∀j ∈N be measures. Then
(a) cµ is a measure for c > 0.
(b) µ + v is a measure.
(c) ∑∞

n=1 µn is a measure.

Definition (Measure space). A measure space is a triplet
(
E, E , µ

)
.

Definition (Probability space). A probability space is a measure space with total measure 1
(i.e. µ (E) = 1) and is often denoted as (Ω,F , P).

1 MEASURE THEORY
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Definition (Borel sets). When E is a topological space and E = B (E), then the measurable sets
are called Borel sets.

Definition (Measurable Rectangles). Let (E, E) and (F,F ) be measurable spaces. Let A ⊆ E
and B ⊆ F be measurable sets. Then

A× B ≡
{(

x, y
)

: x ∈ A, y ∈ B
}

.

If A ∈ E and B ∈ F (i.e. A,B are measurable), then A× B is called a measurable rectangle.

Definition (Product sigma-algebra). Given two measurable spaces (E, E), (F,F ), the product
sigma-algebra is the sigma-algebra generated by all measurable rectangles

E ⊗ F := σ ({A× B : A ∈ E , B ∈ F})

The measurable space (E× F, E ⊗ F ) is called the product sigma-algebra of (E, E) and (F,F ).

Definition (Finite). A measure µ is finite if µ (E) < ∞.

Example. P,L are finite and infinite respectively.

Definition (Sigma-finite). A measure µ is σ−finite if there exists a measurable partition of E,
{En}n≥1 such that µ (En) < ∞, ∀ n.

Note that finite =⇒ σ-finite as E is a partition of itself. In words, a measure is finite if it
assigns finite measure to the entire set E, whereas it is sigma-finite if we can segment E in
smaller sets to which µ assigns finite measure.

Example. L on R is not finite, as L (R) is infinity. However, it is sigma-finite. Take En =
[−n, n), so µ (En) = 2n < ∞ ∀ n and {En}n∈N is a partition of R.

Theorem. Let (E, E) be a measurable space. Let µ, ν be two measures on (E, E) satisfying µ (E) =
ν (E) < ∞. If µ and ν agree on a collection of subsets which is closed under finite intersections
and generates E , then µ, ν are identical.

Definition (CDF). The CDF of a probability measure on R is F (x) := µ
(
(−∞, x]

)
.

Corollary. Two probability distributions on R are the same if their CDFs are the same.

This corollary is a deep result. First, it relies on the fact that C =
{
(−∞, x] : x ∈ R

}
gen-

erates BR and it is closed under finite intersections. Second, it uses the fact that two

1 MEASURE THEORY
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probability measures assign measure 1 to the sample space, hence 1 = µ (R) = FX (R) =
FY (R) = ν (R) = 1. Third, it relies on the theorem above saying that if the two measures µ

and ν agree on C (rather than on the entire BR) they must be equal. Finally, by applying
the definition of our probability measures, we have that

µ (A) = ν (A) , ∀ A ∈ F ⇐⇒ FX (x) = FY (x) , ∀ x ∈ R

We can see that it is much more practical to check the right equality rather than the one
on the left, but they are equivalent!

Definition (Atom, diffuse, purely atomic). Let
(
E, E , µ

)
is a measure space. Assume {x} ∈

E , ∀x ∈ E.
• A point x ∈ E is an atom if µ ({x}) > 0.
• A measure is diffuse if it has no atoms.
• A measure is purely atomic if the set of atoms D is countable and µ

(
E \ D

)
= 0.

Example. A Dirac measure is purely atomic. A Lebesgue measure is diffuse.

Theorem. Let µ be a sigma-finite measure on (E, E). Then we can write µ = λ + ν, where λ is
diffuse and ν is purely atomic.

Proof. Let µ be a sigma-finite measure on a measurable space (E, E). Since µ is sigma-
finite we know that E can contain at most countably many atoms. Denote the union of all
atoms in E as A, and call B = E \ A. Note that A is countable. Let µx ≡ µ ({x}) , x ∈ A.
Now, take S ⊆ E, then

µ (S) = µ
(
(S ∩ A) ∪

(
S ∩ B \ A

))
= µ (S ∩ A) + µ

(
S ∩ B \ A

)
We can see that for every set S, we can decompose µ in the trace of µ on A and the trace of µ

on B \ A. The set A contains countably many atoms, thus µ (S ∩ A) = ∑x∈A µxδx (S) which
is a purely atomic measure. By construction the trace of µ on B \ A does not contain atoms,
hence we decomposed µ in an atomic part µ (S ∩ A) and a diffuse part µ

(
S ∩ B \ A

)
.

Definition (Complete and negligible sets). Let
(
E, E , µ

)
be a measure space.

• A measurable set B is negligible if µ (B) = 0.
• An arbitrary subset B ⊆ E is negligible if it is contained in a measurable set that is negli-

gible, i.e.
∃ A ∈ E : B ⊆ A, µ (A) = 0

1 MEASURE THEORY
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• A measurable space is complete if every negligible set is measurable.

The first two points allow us to characterize negligible sets if they are measurable and if
they are not, respectively.

Note. If a measure space is not complete, you can enlarge to get a complete measure. Roughly, let
N be the collection of all negligible sets of E. Then, E := σ (E ∪N ) is called the completion of(
E, E , µ

)
. Every A ∈ E can be written as A = B ∪ N where B ∈ E , N ∈ N . Then, µ (A) :=

µ (B).

In words, we are just adding the negligible sets to E to get its completion E := σ (E ∪N ).

Definition (Lebesgue measurable sets). E = R, E = BR, µ = Leb. Elements of E are called
Lebesgue measurable sets.

The Lebesgue measure on the Borel sigma-algebra is not complete, meaning that there
are Borel sets of Lebesgue measure zero which contain subsets that are not Borel sets (eg.
Vitali sets). However, it is complete in the completion (trivially).

Definition (Almost everywhere). If a statement holds for all x except for a negligible set of x in
E, then we say that it holds almost everywhere (e.g. holds for µ−a.e. x). Furthermore, if the
underlying measure is a probability measure, we say almost surely. In general, an a.e. statement
is about ∀ x ∈ E \ N, where N is the union of negligible sets.

1.3 Measurable functions

Example (Motivating example). Let Ω = {1, 2, . . . , 100} ,F = 2Ω, P uniform. Outcome ω.
Let X (ω) := ω mod 5 where X : Ω→ {0, 1, 2, 3, 4}. We care about

PX (X = 3) = P
({

ω ∈ Ω : X (ω) = 3
})

= P
(

X−1 ({3})
)

.

We can see that we need measurability of X−1, otherwise we cannot pull back to Ω from {0, 1, 2, 3, 4},
which contains the objects we ultimately care about and to which we assigned a probability.

Definition (Function). A function f from E into F is a rule that assigns an element f (x) of F to
each x in E.

We often roughly define functions as rules that assign a unique element in F to each ele-
ment of E. Note that the same element in F can be assigned to different elements of E but
not the viceversa.

1 MEASURE THEORY
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1.3 Measurable functions 10

Definition (Functions and inverse images). Let E, F be two sets and define a function f : E→
F, x ∈ E 7→ f (x) ∈ F. The inverse image of B for B ⊆ F is

f−1 (B) =
{

x ∈ E : f (x) ∈ B
}

.

Properties (Functions). The following properties can be easily shown.
1. f−1 (∅) = ∅,
2. f−1 (F) = E,
3. f−1 (B \ C

)
= f−1 (B) \ f−1 (C),

4. f−1 (∪iBi) = ∪i f−1 (Bi),
5. f−1 (∩iBi) = ∩i f−1 (Bi).

Proof. Follow from basic properties of interesection and union of sets.

Definition (Measurable functions). Let (E, E) and (F,F ) be two measurable spaces. A map-
ping f : E→ F is measurable relative to E and F if for every B ∈ F , f−1 (B) ∈ E .

Proposition. Let (E, E) and (F,F ) be measurable spaces. Let f : E → F. The mapping f is
measurable relative to E and F if and only if there exists a collection of subsets F0 that generates
F such that f−1 (B) ∈ E for every B ∈ F0.

Proof. Suppose that f is measurable relative to E and F , then 0 ⊂ E , so it follows that
such that f−1 (B) ∈ E for every B ∈ F0 ⊂ E .

Suppose there exists a collection of subsets F0 : F = σ (F0) and that f−1 (B) ∈ E for every
B ∈ F0. Let F1 :=

{
B ∈ F : f−1 (B) ∈ E

}
⊂ F . By assumption we have that F0 ⊂ F1.

By the properties 1, 2, and 4 we have that F1 is a sigma-algebra. Note that for any sigma-
algebra A, we have that A = σ (A) as any sigma-algebra is the smallest sigma-algebra
containing itself. Thus, F = σ (F0) ⊂ σ (F1) = F1 which shows that F = F1.

Note (Checking measurability on a generating set). Let (E, E) and (F,F ) be measurable
spaces. A function f : E → F is measurable relative to E and F if and only if ∃F0 ⊆ F :
F = σ (F0) and ∀ B ∈ F0 : f−1 (B) ∈ E .

In words, we just need to check measurability of the collection of sets that generates the
sigma-algebra on F , the codomain. We need to verify that we can pullback to E from
those specific subsets of F that generate F .

1 MEASURE THEORY
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Definition (Composition of functions). Let (E, E) and (F,F ), (G, G) be measurable spaces.
f : E→ F, g : F → G. The composition of f and g is mapping g ◦ f from E to G is defined as(

g ◦ f
)
(x) ≡ g

(
f (x)

)
, ∀x ∈ G.

Definition. Let E be a set
• f : E→ R is a real-valued function
• f : E→ R is a numerical function
• f : E→ R+ is a positive function

Proposition. If f is measurable relative to E and F and g is measurable relative to F and G, then
g ◦ f is measurable relative to E and G.

Proof. By definition, ∀ y ∈ G , g−1 (y) ∈ F and ∀ x ∈ F , f−1 (x) ∈ E . Then, consider(
g ◦ f

)−1 (y) = f−1
(

g−1 (y)) , y ∈ G. It follows from the definitions above that x =

g−1 (y) ∈ F and f−1 (x) = f−1
(

g−1 (y)) is in E , which proves that
(

g ◦ f
)

is E and G
measurable.

Definition (E -measurable). A real-valued function f : E→ R is E−measurable if it is measur-
able relative to E and BR.

Definition (Borel functions). If E is a topological space and E = BR, then the E -measurable
functions are Borel functions.

Proposition. If f : E→ R is E−measurable if and only if

f−1 ((−∞, x]
)
∈ E , ∀ x ∈ R

Proof. The only if part is straightforward as C =
{
(−∞, x] : x ∈ R

}
⊂ BR.

The if part follows from the fact that BR can be generated by any type of intervals on the
real line and the fact that to check measurability on BR we just need to check it on the
collection of sets that generates the Borel sigma-algebra.

Definition (Positive and negative parts of functions). Let a ∨ b := max {a, b} ; a ∧ b :=
min {a, b}, f : E→ R. Then,

• f + := f ∨ 0 = max
{

f , 0
}

is the positive part of f
• f− := −

(
f ∧ 0

)
= −min

{
f , 0
}

is the negative part of f .

1 MEASURE THEORY
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Note that both functions are positive and f = f + − f−.

Proposition. f is E−measurable ⇐⇒ f + and f− are both E−measurable.

Proof. The if part is immediate. The only if part is a natural corollary of the fact that the
sum of two measurable functions is measurable.

Note. It suffices to focus on positive functions because any function can be decomposed in the sum
of two positive functions, i.e. its positive part f + and its negative part f−.

Definition (Indicator function). Let A ⊆ E. The indicator function of A is

1A (x) :=

1, if x ∈ A

0, if x /∈ A

Proposition. 1A is E -measurable ⇐⇒ A ∈ E .

Definition (Simple function). A function f : E→ B is simple if we can write it as

f =
N

∑
i=1

ai1Ai

where ai ∈ R and Ai ∈ E , ∀ i = 1, . . . , N. Intuitively, it is piece-wise constant with finitely many
pieces, and is not unique.
The (unique) canonical form for every simple function is

f =
m

∑
i=1

bi1Bi

where {B}m
i=1 forms a measurable partition of E and m is minimal (otherwise it is not canonical).

Note that minimality of m comes from the fact that {Bi}m
i=1 is a partition of E.

Properties (Simple functions). A few properties:
1. Every simple function is E−measurable (sum of indicator functions)
2. If f is E -measurable and takes finitely many values which are real then f is simple.
3. If f , g simple, then f + g, f − g, f /g, f ∨ g, f ∧ g are simple. For division, g must be

nowhere 0.

A few definitions and clarifications for notation.

1 MEASURE THEORY
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Definition (Limits of functions). Let
{

fn
}

n≥1 be a sequence of real-valued/numerical functions
on E.

• Define
lim inf

n→∞
fn = lim

n→∞
inf

m≥n
fm, lim sup

n→∞
fn = lim

n→∞
sup
m≥n

fm

• The functions
inf
n≥1

fn sup
n≥1

fn lim inf
n→∞

fn lim sup
n→∞

fn

are all defined pointwise in the sense that ∀ x ∈ E we consider the set
{

fn (x)
}

n≥1 and we
have that all those operations are well defined.

• If lim infn→∞ fn = lim supn→∞ fn, then we say
{

fn
}

n≥1 has a pointwise limit and we

write limn→∞ f = f ; fn
n→∞−−−→ f . We say that fn converges pointwise to f if

lim
n→∞

fn (x) = f (x) , ∀ x ∈ E

• If
{

fn
}

n≥1 is increasing pointwise, then limn→ fn exists (could be ∞) and equals supn≥1 fn.
Write fn ↗ f . A similar notion can be defined for decreasing.

Theorem (Closure of the space of measurable function with respect to taking limits). Let{
fn
}

n≥1 be a sequence of E−measurable numerical functions. The following functions are all
E−measurable:

1. infn≥1 fn

2. supn≥1 fn

3. lim infn→∞ fn

4. lim supn→∞ fn.
Furthermore, if limn→∞ exists, then it is also E -measurable.

Proof. Suppose
{

fn
}

n is a sequence of E−measurable functions. We want to show that
f := supn≥1 fn is E -measurable, or that ∀A ∈ BR, f−1 (A) ∈ E . It suffices to show that
this property for a collection of subsets that generates BR. Consider the collection of sets{
[−∞, r : r ∈ R]

}
. Then

f−1 ([∞, r]
)

=
{

x ∈ E : f (x) ≤ r
}

= ∩∞
n=1
{

x ∈ E : fn (x) ≤ r
}

,
(

f (x) ≤ r ⇐⇒ ∀n ≥ 1, fn (x) ≤ r
)

= ∩∞
n=1 f−1

n
(
[−∞, r]

)︸ ︷︷ ︸
∈E

1 MEASURE THEORY
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Then, since each fn is E -measurable, f−1
n
(
[−∞, r]

)
∈ E . The entire last line is in E since E

is closed under countable intersection.

We can prove 1. simply noticing that infn fn = − supn
(
− fn

)
.

Regarding 3. and 4., note that

lim inf
n→∞

fn = sup
m

inf
n≥m

fn, lim sup
n→∞

fn = inf
m

sup
n≥m

fn

and the composition of measurable functions is measurable.

As regards the last point, if the limit of fn exists, then it must be that

lim sup
n→∞

fn = lim inf
n→∞

fn = lim
n→∞

fn

implying that the limit is also measurable.

Note. Simple functions have nice properties, yet not all functions are simple. Fortunately, we can
approximate measurable functions with simple functions.

Definition (Identity function). The identity function f : R+ → R+, x 7→ f (x).

We want to approximate the identity function as as a sum of simple functions.

Lemma. For each n ∈N, define

dn (r) =
n2n

∑
k=1

k− 1
2n 1

[
r ∈

[
k− 1

2n ,
k

2n

]]
+ n1 [r ≥ n] .

Each dn is an increasing simple function and dn (r)→ r, ∀r ∈ R+.

Note. We have the following
• each dn is a simple function ∀ n ≥ 1,
• dn ↗ f pointwise, i.e. ∀ x ∈ R, dn (x)↗ f (x)

Theorem. Consider a measure space
(
E, E , µ

)
. A positive function on E is E -measurable if and

only if it is the limit of an increasing sequence of positive simple functions.

Proof. ( ⇐= ) Positive simple functions are measurable, plus measurable functions are
closed under limits.

1 MEASURE THEORY
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( =⇒ ) Take a E−measurable function f . Let fn := dn ◦ f . Note that for all n, fn is measur-
able (composition of measurable functions), positive (composition of positive functions),
simple (takes on finitely many values). Moreover, take any point x ∈ E, it is easy to see
that either fn+1 (x) = fn (x) or fn+1 (x) > fn (x)) and, by the fact that dn (r) → r, we have
that limn→∞ dn

(
f (x)

)
= f (x) , ∀ x ∈ R+ =⇒ fn → f . We conclude that fn ↗ f .

The idea of the ’only if’ part is that we first take f and then we chop/approximate it using
dn. As n→ ∞ this approximation becomes nicer.

Note. The main idea behind this theorem is that we can approximate decently well any measurable
function f in two steps. First, we decompose it in f + and f− which are both positive and measur-
able. Second, we approximate f + and f− with an increasing sequence of positive simple functions.
This will lead us to define the Lebesgue integral.

Definition (Isomorphism). Suppose (E, E) , (F,F ) are two measurable spaces and suppose f :
E→ F is a bijection. We say that f is an isomorphism of (E, E) and (F,F ) if

1. f is a bijection.
2. f is measurable relative to E and F .
3. f−1 is measurable relative to F and E .

Definition. Two spaces are isomorphic if there exists an isomorphism between them.

Definition (Standard measurable space). (E, E) is a standard measurable space if it is iso-
morphic to (F,BF) for some Borel subset F of R.

Note. Most measurable spaces we will encounter will be standard. Deep result: every standard
measurable space is isomorphic to one of the following

• [0, 1] with the Borel sigma-algebra
• {1, . . . , n} with discrete sigma algebra
• N with discrete sigma algebra

1.4 Integration

We have a measure space
(
E, E , µ

)
and a E−measurable function f : E→ R. Measurabil-

ity of f is key here because we want to be able to approximate its positive parts f + and f−

with positive simple functions!!

1 MEASURE THEORY



1.4 Integration 16

Note. We need integration because later, we will be taking expected values. Given
(
E, E , µ

)
,

f : E → R, want to define integral of f with respect to µ for all reasonable f . The approach will
do so using simple functions, and extend by taking limits.

Definition (Integration notation). We write f ∈ E to denote that f is E -measurable. We write
f ∈ E+ to denote that f is E -measurable and positive.
The below notation for integration are equivalent

µ f ≡ µ
(

f
)
≡
∫

E
µ (dx) f (x) ≡

∫
E

f
(
xdµ (x)

)
≡
∫

E
f dµ ≡

∫
f dµ.

Definition (Integral). Below are notions of integration under different cases for function f .
1. Let f ∈ E+ be a simple function. Write f in its canonical form f = ∑n

i=1 ai1Ai . Then

µ
(

f
)

:=
n

∑
i=1

aiµ (Ai) .

Note that the formula remains the same even if f is not in canonical form.
2. Let f ∈ E+. We know that positive functions can be written as the limit of an increasing

sequence of positive simple functions. Let fn := dn ◦ f . Define

µ
(

f
)

:= lim
n→∞

µ fn.

Note that µ
(

f
)

can be ∞.
3. Let f ∈ E , then f = f + − f−. Define

µ
(

f
)

:= µ
(

f +)− µ
(

f−
)

= lim
n→∞

µ
(
dn ◦ f +)− lim

n→∞
µ
(

dn ◦ f−
)

provided that at least one term on the RHS is finite. Otherwise the integral is not defined
because µ

(
f +)− µ

(
f−
)

= ∞−∞.

Note. It might seem that the definition of µ using dn is somehow arbitrary. However, the monotone
class theorem ensures us that it is not arbitrary.

Definition (Integrability). f is integrable with respect to µ if µ
(

f
)

exists and is finite. This
is equivalent to say that

• f is integrable ⇐⇒ µ
(

f +) < ∞ and µ
(

f−
)
< ∞.

• f is integrable ⇐⇒
∫
| f |dµ < ∞.

Property (Integration). Let a, b ∈ R, f , g, fn ∈ E+, then

1 MEASURE THEORY
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1. Positivity: µ f ≥ 0. If µ f = 0, then f = 0 µ−a.e.
2. Linearity: µ

(
a f + bg

)
= aµ

(
f
)

+ bµ
(

g
)

Proof. Immediately follows from definition of simple functions. In general, it fol-
lows from MCT.

3. Monotonicity: If f ≤ g, then µ
(

f
)
≤ µ

(
g
)
.

Proof. Just notice that g − f is positive and apply 1) and then 2) to conclude that
µ
(

g
)
≥ µ

(
f
)
.

Example (Integration). : Below give a few simple examples in which we vary the measure the
integral is defined on

1. Discrete measures: For the Dirac measure,

δx0

(
f
)

=
∫

f dδx0 = f (x0)

and more in general for any countable set D

µ = ∑
x∈D

m (x) δx, =⇒
∫

f dµ = ∑
x∈D

m (x) f (x)

2. Discrete spaces: Suppose (E, E) is discrete, that is E is countable and E = 2E. Every µ has
this form with D = E and µ (x) = µ ({x}). For every f ∈ E ,

µ f = ∑
x∈E

µ ({x}) f (x) .

The notation is suggestive of an inner product.
3. Lebesgue integrals: Suppose E ⊆ Rd is a Borel set, E = B (E). µ is a restriction of

Lebesgue measure on Rd to (E, E). Then

µ f = LebE f =
∫

E
Leb (dx) f (x) =

∫
E

dx f (x) =
∫

E
f (x) dx.

Note. Consider positive functions. If the Riemann integral of f exists, then so does the
Lebesgue integral. The two are the same. The converse is false. Indeed, Lebesgue integral
exists for a larger class of functions. Consider the following example.

1 MEASURE THEORY
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Example (Valid Lebesgue integral but not Riemann). Suppose E = [0, 1] , f (x) =
1Q (x) . The Riemann integral does not exist. LebE f = 0. Let Q =

{
q1, q2, . . .

}
and

An =
{

q1, . . . , qn
}

. Then 1An ↗ 1Q and 1An is a simple function. 0 = LebE
(
1An

)
↗

LebE
(
1Q

)
.

We can now merge what we have covered so far. Take a measurable function f and a
measurable set A. Then, we can approximate f = f + − f− with dn ◦ f + and dn ◦ f−,
take the limit, and define µ

(
f
)
. Moreover, being A a measurable set, we can assign it a

measure. Using these two ingredients, we can define integration over a set.

Definition (Integration over a set). Consider a measure space
(
E, E , µ

)
. Let f be a measurable

function and A ∈ E be a measurable set. Then, f1A is a measurable function and the integral of f
over a is

µ
(

f1A
)

=
∫

A
f dµ =

∫
E

f1Adµ

1.4.1 Convergence Theorems

One of the most basic questions in integration theory is the following: If fn → f pointwise,
when can one say that ∫

fndµ→
∫

f dµ?

The Riemann integral is not sufficiently general to permit a satisfactory answer to this
question. Perhaps the simplest condition that guarantees the convergence of the integrals
is that the functions fn : X → R converges uniformly to f : X → R and X has finite
measure. In that case∣∣∣∣∫ fndµ−

∫
f dµ

∣∣∣∣ ≤ ∫ ∣∣ fn − f
∣∣ dµ ≤ µ (X) sup

X

∣∣ fn − f
∣∣→ 0

as n→ ∞. The assumption of uniform convergence is too strong for many purposes, and
the Lebesgue integral allows the formulation of simple and widely applicable theorems
for the convergence of integrals. The most important of these are the monotone conver-
gence theorem and the Lebesgue dominated convergence theorem. The utility of these
results accounts, in large part, for the success of the Lebesgue integral.

Some conditions on the functions fn in the example above are, however, necessary to en-
sure the convergence of the integrals, as can be seen from very simple examples. Roughly
speaking, the convergence may fail because ”mass” can leak out to infinity in the limit.
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Example. Define fn : R→ R by

fn (x) =

n if 0 < x < 1/n

0 otherwise

Then fn → 0 as n→ ∞ pointwise on R, but∫
fndx = 1 for every n ∈N

The problem with this function is that it doesn’t behave well in the limit, as it jumps back to 0.

Example. By modifying this example we can obtain a sequence fn that converges pointwise to zero
but whose integrals diverge to infinity.

fn (x) =

n2 if 0 < x < 1/n

0 otherwise

Example. Define fn : R→ R by

fn (x) =

1/n if 0 < x < n

0 otherwise

Then fn → 0 as n→ ∞ pointwise on R, and even uniformly, but∫
fndx = 1 for every n ∈N

In what follows, we will give four results that allow us, under different conditions, to
interchange limits and integrals:

1. Monotone Convergence Theorem for increasing sequences of positive functions
2. Fatou’s Lemma for sequences of positive functions
3. Dominated Convergence Theorem for dominated sequences of positive functions
4. Bounded Convergence Theorem for bounded sequences of positive functions

Theorem (Monotone convergence theorem). Let
{

fn
}

n≥1 be an increasing sequence in E+.
Then

lim
n→∞

∫
fndµ =

∫
lim
n→∞

fndµ

1 MEASURE THEORY
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Proof. f := limn→∞ fn is well-defined since
{

fn
}

n≥1 is increasing in n. f ∈ E+, so µ
(

f
)

is
well-defined. From monotonicity of µ, f ≥ fn, ∀ n ∈ N =⇒ µ

(
f
)
≥ µ

(
fn
)
. Taking the

limit implies µ
(

f
)
≥ limn→∞ µ

(
fn
)
, hence∫

lim
n→∞

fndµ ≥ lim
∫

fndµ

.

For the other direction, we need to use definition of integral. Show

lim
n→∞

∫
fndµ ≥

∫
dk ◦ f dµ, ∀ k

Then, take a limit as k→ ∞ so that the RHS becomes µ
(

f
)
.

Note (Comments on MCT). This is the main theorem in integration.
• Helpful tool for interchanging limits and integration.
• MCT states that, if we think about µ as a mapping f 7→ µ f , µ : E+ → R+ and we consider

a positive measurable function, then is continuous under increasing limits.
• Also implies definition of integral does not depend on the choice of approximation.
• The monotone convergence theorem implies that failure of convergence of the integrals can-

not occur in an increasing sequence of functions, even if the convergence is not uniform or
the domain space does not have finite measure.

• MCT does not hold for the Riemann integral

Fatou’s theorem allows you to tell something about interchangeability of limits and inte-
grals when your sequence of measurable positive functions is not necessarily increasing,
thus it might not have a well defined limit. However, the lim sup and the lim inf do exist!

Lemma (Fatou). Let
{

fn
}

be a sequence in E+. Then

µ

(
lim inf

n→∞
fn

)
≤ lim inf

n→∞
µ
(

fn
)

.

Proof. Proof follows from MCT on the positive function gn := infk≥n fk and is an exercise.

It is possible to convert it in terms of lim sup.
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Definition (Dominate). A function f is said to be dominated by the function g if | f |≤ g. Then,
g is called the dominating function and f the dominated function.

Definition (Bounded). If
{

fn
}

n≥1 can be dominated by a constant, then we say
{

fn
}

is bounded.
That is ∃ c ∈ R : | fn|≤ c, ∀ n ∈N.

Theorem ((Lebesgue) Dominated convergence theorem). Let
(
E, E , µ

)
be a measure space

and let
{

fn
}

n≥1 be a sequence of measurable real-valued functions. Suppose that there exists an
integrable function g such that | fn|≤ g. Assume f := limn→∞ fn exists. Then f is integrable and

µ
(

f
)

= µ

(
lim
n→∞

fn

)
= lim

n→∞
µ
(

fn
)

.

Proof. Follows from MCT.

We can also derive a corollary which requires a stronger condition than being dominated.

Corollary (Bounded convergence theorem). Let
(
E, E , µ

)
be a measure space and let

{
fn
}

n≥1
be a sequence of measurable real-valued functions. Suppose that the measure µ is finite (µ (E) <
∞),

{
fn
}

n≥1 is bounded, and that the limit exists f
∫

f dµ = limn→∞
∫

fndµ. Then, f is inte-
grable

µ

(
lim
n→∞

fn

)
= lim

n→∞
µ
(

fn
)

.

Proposition (Insensitivity of integral wrt changes over a negligible set). Below give a few
simple properties.

1. If A is negligible, then µ
(

f1A
)

= 0, ∀ f ∈ E .
2. If f , g ∈ E+ and f = g a.e., then µ f = µg.
3. If f ∈ E+ and µ f = 0, then f = 0 a.e.

Proof. Quick proofs of above statements.
1. True for simple function by definition. Extends to non-simple case by MCT. Then to

positive and negative parts.
2. A :=

{
x ∈ E : f (x) 6= g (x)

}
=
{

f 6= g
}

. By assumption, µ (A) = 0 since f = g µ−a.e.,
hence A is negligible. Decompose f and g into

f = f1A + f1Ac , g = g1A + g1Ac
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Part (a) implies
µ
(

f1A
)

= µ
(

g1A
)

= 0

. Since µ
(

f
)

= µ
(

f1Ac
)

, µ
(

g
)

= µ
(

g1Ac
)

on Ac, f = g .
3. Let An :=

{
x ∈ E : f (x) ≥ εn

}
, εn ↘ 0. A :=

{
x ∈ E, f (x) > 0

}
. Since An ↗ A,

µ (An)↗ µ (A) from sequential continuity. Then

0 =
∫

f dµ ≥
∫

An

f dµ ≥
∫

An

εndµ = εnµ (An) =⇒ µ (An) = 0, ∀ n ≥ 1

which finally implies µ (A) = 0.

Note. Can relate all results assuming holding almost everywhere.

Theorem (MCT - Almost Everywhere Version). Let
(
E, E , µ

)
be a measure space. LEt

{
fn
}

n≥1
be a sequence of numerical functions on E. Suppose that

• ∀ n there exists gn E−measurable such that gn = fn a.e.
• fn ≥ 0 a.e. ∀ n ≥ 1
• fn+1 ≥ fn a.e. ∀ n ≥ 1

Then, limn→∞ fn exists a.e., is non-negative a.e. and∫
lim
n→∞

fndµ = lim
n→∞

∫
fndµ

Definition (Product space). Let
(
E, E , µ

)
, (F,F , ν) be two measurable spaces. Then, we call

product space
(
E× F, E ⊗ F , µ× ν

)
. Let A ∈ E , B ∈ F , then we define as product measure(

µ× ν
)
(A× B) = µ (A) · ν (B).

Note. Recall that the product sigma-algebra is

E ⊗ F = σ ({A× B : A ∈ E , B ∈ F})

It’s enough to specify the product measure since measurable rectangles generate the product sigma-
algebra and are closed under intersection. Thus it extends uniquely to E ⊗ F .

Theorem (Fubini’s Theorem). Let
(
E× F, E ⊗ F , µ× ν

)
be a product space and consider f :

E× F → R, E ⊗ F−measurable. If
∫

E×F| f |d
(
µ× ν

)
< ∞, then∫

E×F
f d
(
µ× ν

)
=
∫

E

∫
F

f dµdν =
∫

F

(∫
E

f dµ

)
dν =

∫
E

(∫
F

f dν

)
dµ

Note: Order of integration can be interchanged.
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Theorem (Tonelli). If f ≥ 0, then the same conclusion holds.

Definition (Finite product measure spaces). Let
(
Ei, Ei, µI

)
, i = 1, . . . , n be n measurable

spaces. Then, we call product measure space
(
×n

i=1Ei,⊗n
i=1Ei,×n

i=1µi
)
.

Definition (Countably infinite product measure spaces). Let
(
Ei, Ei, µi

)
, i ∈ N be measur-

able spaces. Then, we call product measure space
(
×∞

i=1Ei,⊗∞
i=1Ei,×∞

i=1µi
)
.

Example. Let RN =
{

xi = (x1i, x2i, x3i, . . .) , xi ∈ R
}

. Equip RN with the Borel sigma-algebra
BRN = σ (R) generated by all finite-dimensional measurable rectangles (aka cylinder sets) of the
form

R := {B1 × B2 × · · · × Bn ×R×R× · · · , Bi ∈ BR, n ≥ 1}

We want to build a measure on
(

RN, BRN

)
.

Theorem (Kolmogorov’s extension theorem). Suppose we are given a sequence of probability
measures {νn}n≥1 where νn is a probability measure on (Rn, BRn) that is consistent, i.e.

νn+1 (B1 × B2 × · · · × Bn ×R) = νn (B1 × · · · × Bn) , ∀ n ≥ 1, ∀ Bi ∈ BR

Then, there exists a unique probability measure P on
(

RN, BRN

)
such that

P

({
ω ∈ RN : ω1 ∈ B1, . . . , ωn ∈ Bn

})
= νn (B1 × · · · × Bn) , ∀ n ≥ 1, ∀ Bi ∈ BR

Note. A few facts
• Kolmogorov’s theorem is a result about existence and uniqueness
• Note that P is defined on RN but we just need to evaluate it on a finite number of elements

n.
• In particular if µ1, µ2, µ3, . . . are probability measure on (R, BR) and νn := ×n

i=1µi, then
{νn}n≥1 is consistent and by Kolmogorov’s extension theorem there is a unique product

measure on
(

RN, BRN

)
.

• Sometimes rather than indexing the sequences with N but with R (stochastic processes in
continuous time). This theorem still applies.
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2 Asymptotics and the Law of Large Numbers

2.1 Probability and Measure Theory

Let (Ω,F , P) be a probability space, where Ω is the set of possible outcomes, F is the
sigma-algebra consisting of events, and P is a probability measure on (Ω,F ).
We care about random variables, which are F−measurable maps X : Ω → R and we
might be interested in knowing the probability of an event A ∈ BR, i.e.

µ (A) := P (X ∈ A) = P
({

ω ∈ Ω : X (ω) ∈ A
})

= P
(

X−1 (A)
)

and µ is a probability measure on (R, BR) that is called the distribution of X.

This last sentence is worth more attention as we are defining a measure via another mea-
sure.

Proposition. Let (E, E) and (F,F ) be two measurable spaces, ν be a measure on (F,F ), and
h : F → E be a measurable function. Then, ν ◦ h−1 is a measure on (E, E) and it is called the
image of ν under h.

Proof. In order for ν ◦ h−1 to be a measure we need to check three properties:
•
(

ν ◦ h−1
)
(∅) = ν

(
h−1 (∅)

)
= ν (∅) = 0. This follows from the fact that h is mea-

surable, thus h−1 maps back in F and from the fact that the pre-image of the empty
set is the empty set

• for A ∈ E ,
(

ν ◦ h−1
)
(A) = ν

(
h−1 (A)

)
= ν (B) ≥ 0 as B ∈ F because h is measur-

able
•
(

ν ◦ h−1
) (
∪∞

i=1 Ai
)

= ν
(

h−1 (∪∞
i=1 Ai

))
= ν

(
∪∞

i=1h−1 (Ai)
)

= ∑∞
i=1 ν

(
h−1 (Ai)

)

Now, consider (F,F ) ≡ (Ω,H), (E, E) ≡ (R, BR), ν ≡ P, and h ≡ X. We can see
that when we define our background probability space (Ω,H, P) and a random variable
X, this gives us another measure space in which we can use mathematics and visualize
things. More explicitly, we can jump back and forth from the background probability
space to the forwards probability space (R, BR, PX) as follows

P (X ∈ A) = P
({

ω ∈ Ω : X (ω) ∈ A
})

= P
(

X−1 (A)
)

=
(

P ◦ X−1
)
(A) = PX (A)

for A ∈ H. Hence, the distribution PX of a random variable X is the image of P through
’the lenses’ of X, i.e. it is the transformed (through the measurable map X) version of
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P. Note that the distribution induces a distribution function, which is a distinct object.
Indeed, the distribution function is defined as

c (x) = PX
(
(−∞, x]

)
= P (X ≤ x) , x ∈ R

If we apply a (measurable) transformation, say f : E→ F , to our random variable X, then
Y (ω) = f

(
X (ω)

)
is going to be a random variable and PY is going to be a measure on

(F,F ), indeed

P (Y ∈ B) = P
(

X ∈ f−1 (B)
)

=
(

PX ◦ f−1
)
(B) = PY (B) , B ∈ F

We also care about expectations. Say we have a random variable X : Ω → R and a
function f : R→ R, then the expectation of X is the integral of X with respect to P, i.e.

E
[

f (X)
]

=
∫

Ω
f
(
X (ω)

)
dP (ω) =

∫
R

f (x) dµ (x)

note the change of variables that occurs in the second equality. It exists as long as X is
positive, bounded, or, more generally, integrable. Integrability usually requires µ

(
| f |
)
<

∞, with random variables we denote it with E
[
|X|
]
< ∞. Since expectations are integrals,

all the results we saw hold with expectations as well, thus

Proposition. The following are true:
• Positivity: X ≥ 0 =⇒ E [X] ≥ 0
• Monotonicity: X ≥ Y =⇒ E [X] ≥ E [Y]
• Linearity
• Insensitivity to negligible sets: X, Y ≥ 0, X = Y a.s =⇒ E [X] = E [Y]
• Monotone convergence theorem: Xn ≥ 0, Xn ↗ X =⇒ E [Xn]↗ E [X]

• Fatou’s lemma: Xn ≥ 0 =⇒ E [lim inf Xn] ≤ lim inf E [Xn]

• Dominated convergence: |Xn|≤ Y, E
[
|Y|
]
< ∞, lim Xn exists, then

lim
n→∞

E [Xn] = E

[
lim
n→∞

Xn

]
Definition (Sigma-algebras generated by random variables). Let (F,F ) be a measurable
space and X : Ω→ F be a random variable. Then, the sigma-algebra generated by X is defined as

σ (X) =
{

B ⊆ Ω : B = X−1 (A) , A ∈ F
}
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Note. The sigma-algebra generated by a RV is the pre-image of measurable sets of F through X.
It should be noted that it is by construction the smallest sigma-algebra G on Ω such that X is
measurable with respect to G.

In general, if a random variable X is measurable with respect to a sigma-algebra E it will be
measurable to any other sigma-algebra F ⊇ E . Intuitively, F is a collection of sets that contains
the collection of sets E and something more, thus if E was already “precise” enough to measure X,
the same must hold true for F . This does hold, in general, for sigma-algebras such that G ⊆ E
because they are too coarse. In this sense, σ (X) is a threshold above which it is still possible to
measure X and below it is impossible.

Another important thing to note is that the sigma-algebra generated by a random variable is the
mathematical equivalent of the concept of information. Indeed, σ (X) is the sigma-algebra gener-
ated by a particular collection of sets, i.e. those sets that partition Ω through the pre-image of X. It
follows that if a random variable Y is measurable with respect to σ (X). In other words, Y cannot
contain more information than X, because every time that we pull back onto Ω using Y we land
in an element of σ (X), hence the partition of Ω induced by Y is by no means finer than the one
induced by X. The next theorem formalizes this idea.

Theorem. Let X be a random variable taking values in some measurable space (E, E). A mapping
V : Ω → R is measurable with respect to σ (X) if and only if V = f ◦ X for some deterministic
function f ∈ E .

Since we are dealing with random objects, we want to define an appropriate notion of
convergence.

Definition (Convergence in probability). Xn converges in probability to m if

∀ε > 0, lim
n→∞

P
(
|Xn −m|≥ ε

)
= lim

n→∞
P
({

ω ∈ Ω : |Xn (ω)−m|≥ ε
})

= 0

It is often noted as i.p. or Xn
P−→ m.

Note that once we fix an ε, the statement becomes deterministic and we can use standard
results from limit theory.

We will now see some useful inequalities to prove convergence in proability.

Theorem (Markov’s inequality). Let X be a non-negative RV and let λ > 0. Then

P (X ≥ λ) ≤ E (X)

λ
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Proof. P (X ≥ λ) = E
(
1 (X ≥ λ)

)
≤ E

(
X
λ

)
= E(X)

λ . Alternatively, you could argue

E (X) =
∫ ∞

0 xp (x) dx ≥
∫ ∞

λ xp (x) dx ≥ λ
∫ ∞

λ p (x) dx = λP (X ≥ λ)

Note. Note that E
(
1 (X ≥ λ)

)
≤ E

(
X
λ

)
comes from the fact that the indicator function is

always bounded by the linear function X/λ.

Theorem (Chebyshev’s inequality). Let X be a real-valued RV with E
(

X2
)
< ∞ and λ > 0.

Then
P
(
|X−E (X) |≥ λ

)
≤ V (X)

λ2

Proof. It follows naturally from Markov’s inequality by applying it to the square of the
deviation

P
(
|X−E (X) |≥ λ

)
= P

(
|
[
X−E (X)

]2 |≥ λ2
)
≤ V (X)

λ2

where the first equality follows from λ > 0.

Note. This is another way to bound the probability of an event, but rather than using a linear
bound it uses a quadratic bound. Which one is better depends on the distribution of X, because the
quadratic is better as long as X < λ, whereas the the linear is better if X > λ.

Theorem (General Markov). Assume f : R → R+ is non-decreasing. Let X be a non-negative
RV and let λ > 0. Then

P (X ≥ λ) ≤
E
(

f (X)
)

f (λ)
.

Proof. Directly from Markov inequality

P (X ≥ λ) ≤ P
(

f (X) ≥ f (λ)
)
≤

E
(

f (x)
)

f (λ)

where the first inequality follows from the fact that f (·) is non-decreasing.

Note. Again, we use the same intuition that the bounding function must be above the indicator.
In this case we use f (x) / f (λ). That’s why we care about f being increasing.

Theorem (Chernoff Bound). Take f (x) = exp (tx) where t > 0. Then optimize bound over
t > 0. Let X1, . . . , Xn be mutually independent Bernoulli RVs. pi := E (Xi) , Sn := ∑n

i=1 Xi and
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µ = ∑i pi. Then ∀ λ > 0

P
(
Sn ≥ µ + λ

)
≤ exp

(
−2λ2

n

)

P
(
Sn ≥ µ− λ

)
≤ exp

(
−2λ2

n

)

Note. This bound is frequently used.
1. There are many other forms of this inequality, which are generally called concentration

inequalities
2. The proof is based on using the approximating function, optimizing wrt t and using some of

the inequalities above.
3. Bound decays like Gaussian. Can’t do much better in many situations. The non-improvability

follows from CLT
4. This is a finite sample bound, unlike the CLT which is an asymptotic statement

Example. Chebyshev vs Chernoff. Let X1, . . . , Xn be Bernoulli RVs.

P
(
|Sn − n/2|≥ εn

)
≤ 1

4
ε2n (Chebyshev)

P
(
|Sn − n/2|≥ εn

)
≤ 2e−2ε2n (Chernoff)

Take n = 100 and ε = 0.2, then

P
(
|S100 − 50|≥ 20

)
≤ 0.00625 (Chebyshev)

P
(
|S100 − 50|≥ 20

)
≤ 0.00067 (Chernoff)

Theorem (Generic Chernoff Bound). The generic Chernoff bound for a random variable X is
attained by applying Markov’s inequality to etX For every t > 0 :

P (X ≥ a) = P
(

et·X ≥ et·a
)
≤

E
[
et·X
]

et·a

Note. When X is the sum of n random variables X1, . . . , Xn, we get for any t > 0

P (X ≥ a) ≤ e−taE

[
∏

i
et·Xi

]
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In particular, optimizing over t and assuming that Xi are independent, we obtain,

P (X ≥ a) ≤ inf
t>0

e−ta ∏
i

E
[
etXi
]

Similarly,
P (X ≤ a) = P

(
e−tX ≥ e−ta

)
and so,

P (X ≤ a) ≤ inf
t>0

eta ∏
i

E
[
e−tXi

]
Specific Chernoff bounds are attained by calculating E

[
e−t·Xi

]
for specific instances of the basic

variables Xi.

Gaussian case: Let X ∼ N
(

µ, σ2
)

. Using the moment-generating function for a Gaussian
random variable, we conclude for all t ≥ 0

P
[
X ≥ µ + t

]
≤ exp

(
− t2

2σ2

)

Theorem (Weak law of large numbers). Let X1, X2, . . . be an i.i.d. sequence of RVs. Assume
E
[
|Xi|

]
< ∞. Let Sn = ∑n

i=1 Xi. Then

Sn

n
P−→ E [Xi] .

Proof. This is a first proof that relies on E
[

X2
i

]
< ∞ (stronger condition than the one

stated above). Fix ε > 0. Note E
(
Sn/n

)
= 1

n ∑i E (Xi) = m.

P

(∣∣∣∣Sn

n
−m

∣∣∣∣ ≥ ε

)
= P

∣∣∣∣∣Sn

n
−E

(
Sn

n

)∣∣∣∣∣ ≥ ε

 ≤ V
(
Sn/n

)
ε2 .

Computing the variance,

V
(
Sn/n

)
=

1
n2 V (Sn) =

σ2

n
.

Substituting the variance into the original expression, we can take the limit as n→ ∞.

Note. A few observations about the proof strategy and assumptions.
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1. We used independence, but same proof works for negatively correlated RVs. Assume X1, X2, . . .
are identically distributed with Cov

(
Xi, Xj

)
≤ 0, i 6= j. Then

Var

(
n

∑
i=1

Xi

)
=

n

∑
i=1

Var (Xi) + ∑
i 6=j

Cov
(

Xi, Xj

)
≤ nV (Xi)

2. Can get rid of the second moment condition by a truncation argument. Will see this for
SLLN.

Definition (Almost sure convergence). {Xi}i≥1 sequence of RV converges to 0 almost surely
if

P

({
ω ∈ Ω : lim

n→∞
Xn (ω) = 0

})
= P

(
lim
n→∞

Xn = 0
)

= P (Xn → 0) = 1.

We often note it as Xn
a.s.−→ 0.

Note. We convert again a probabilistic statement into a deterministic one by fixing an ω.

We are interested in that portion of the space Ω in which the sequence {Xn}n converges to 0
pointwise. There can be measure-zero sets of Ω for which this does not happen, but as long as they
are negligible this does not matter!

Another important thing is to note the difference between convergence in probability and almost
sure convergence. The latter is indeed a stronger statement. To see this, let’s rewrite the definitions
of a.s. convergence and convergence i.p. and compare them

∀ ε > 0, lim
n→∞

P
(
|Xn −m|≤ ε

)
= 1 (Xn

P→ m)

∀ ε > 0, ∃N ∈N : P
(
|Xn −m|≤ ε

)
= 1, ∀ n ≥ N (Xn

a.s.→ m)

We can see that convergence in probability is a statement about the probability of the sequence of
RVs Xn getting closer to m that holds only in the limit. Almost sure convergence is instead a
statement about the probability of the sequence getting closer to m that holds for all n larger than
a certain Nε.

Finally, there is an alternative definition of almost sure convergence which is the following

P

({
ω ∈ Ω : lim

n→∞
Xn (ω) = X (ω)

})
= 1

which requires that the sequence Xn (ω) is convergent for almost all ω.
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Proposition (a.s. =⇒ i.p.). If Yn → 0 a.s., then Yn → 0 i.p.

Proof. Recall that Yn → 0 ⇐⇒ ∀r ∈ N+, ∃N ∈ N : ∀ n ≥ N, |Yn|≤ 1
r . Expressed in terms

of events,

{Yn → 0} = ∩∞
r=1 ∪∞

N=1 ∩∞
n=N

{
|Yn|≤

1
r

}
.

Then, beginning with the definition of almost sure convergence

P (Yn → 0) = 1 ⇐⇒ P

(
∩∞

r=1 ∪∞
N=1 ∩∞

n=N

{
|Yn|≤

1
r

})
= 1

⇐⇒ ∀ r ≥ 1, P

(
∪∞

N=1 ∩∞
n=N

{
|Yn|≤

1
r

})
= 1, (above subset of below)

⇐⇒ ∀ r ≥ 1, lim
N→∞

P

(
∩∞

n=N

{
|Yn|≤

1
r

})
= 1, (sequential continuity)

=⇒ ∀ r ≥ 1, lim
N→∞

P

({
|YN |≤

1
r

})
= 1, (fewer intersections)

⇐⇒ ∀ r ≥ 1, lim
N→∞

P

({
|Y| >

1
r

})
= 0, (take complement)

⇐⇒ Yn
p→ 0 (take limit as r → ∞)

Note. The converse is not true because of line 4. Indeed, note that P

({
|Yn|≤ 1

r

})
= 1 implies

∩nP

({
|Yn|≤ 1

r

})
≤ 1.

Definition (limsup and liminf). Let (Ω,F , P) be a probability space and Ai ∈ F , i ≥ i. Then
limsup for sets is defined as

lim sup An := ∩∞
j=1 ∪∞

i=j Ai

=
{

ω ∈ Ω : ω ∈ Ai for infinitely many values of n
}

=
{

ω ∈ Ω : ω ∈ Ai infinitely often (i.o.)
}

=
{

ω ∈ Ω : ∀ j ∈N, ∃ i ≥ j : ω ∈ Ai
}
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liminf for sets is defined as

lim inf An := ∪∞
j=1 ∩∞

i=j Ai

=
{

ω ∈ Ω : ω ∈ Ai for all but finitely many values of n
}

=
{

ω ∈ Ω : ω ∈ Ai eventually (ev)
}

=
{

ω ∈ Ω : ∃ j ∈N, ∀ i ≥ j : ω ∈ Ai
}

Note. We should read the lim sup as for all j there exists and i ≥ j such that an event holds. On
the other hand, we should interpret the lim inf as there exists a j such that for all i ≥ j an event
holds This is because intersections are equivalent to ’for all’ and unions are equivalent to ’there
exists at least one’.

From the definition we can note that lim inf An ⊆ lim sup An because the lim inf describes a
harder event to realize than lim sup. Indeed the events in lim inf An imply those in lim sup An

but not the viceversa. To see this, note that lim sup An is a subset of the sample space such that
for every element of a sequence j there exists an element i further ahead that contains ω. The
lim inf An contains all ωs such that all the elements of the sequence after the j-th contain ω.

The lim sup of An can be thought of as the set of outcomes that occur infinitely many times within
the infinite sequence of events {An}n.

Note. Why the terminology? Close correspondence to functions. Consider

lim sup
n→∞

1An (ω) = 1lim sup An (ω) .

Proposition. By Fatou’s Lemma,

P (lim inf An) ≤ lim inf
n→∞

P (An) ≤ lim sup
n→∞

P (An) ≤ P
(
lim sup An

)
.

Proof. Start with P (A) = E [1A] and then move on applying Fatou’s lemma.

We now discuss techniques we might want to use to prove almost sure convergence.
These lemmas are called Borel-Cantelli lemmas and they are sufficient conditions for
almost sure convergence. The first lemma is the following:

Lemma (Borel-Cantelli). Let {An}n be a sequence of events. Then,
∞

∑
n=1

P (An) < ∞ =⇒
∞

∑
n=1

1 (An) < ∞
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This lemma tells us that if the sum of the proabilities of a sequence of events is bounded,
then it must be that only finitely many of the events hold.

Lemma (Borel-Cantelli I). Let (Ω,F , P) be a probability space and Ai ∈ F , i ≥ 1.
If ∑∞

n=1 P (An) < ∞, then
P
(
lim sup An

)
= 0.

That is, almost surely only finitely many events {An}n≥1 may occur.
In other terms, ∃N ∈N : Ac

n, ∀ n ≥ N.

The lemma is saying that the probability that infinitely many of the events hold is 0. This
comes directly from the definition of lim sup An :=

{
ω ∈ Ω : ω ∈ Ai infinitely often

}
.

Proof. Fix ε > 0. Assumption implies there exists N such that ∑∞
n=N P (An) = ε (finite tail).

Then

0 ≤ P
(
lim sup An

)
= P (∩∞

N=1 ∪∞
n=N An) ≤ P (∪∞

n=N An) ≤
∞

∑
n=N

P (An) ≤ ε.

The first inequality follows from An ⊆ ∪∞
n=N An and the second inequality follows from

the union bound. Finally, as ε was arbitrary, take ε↘ 0.

Lemma (Borel-Cantelli II). Let (Ω,F , P) be a probability space and Ai ∈ F , i ≥ 1.
Suppose events {Ai}i≥1 are mutually independent and ∑∞

n=1 P (An) = ∞. Then

P
(
lim sup An

)
= 1.

that is, almost surely infinitely many of the events {An}n≥1 occur.
In other terms, ∃N ∈N : An, ∀ n ≥ N

Proof. Equivalently, we can show

P
((

lim sup An
)c
)

= P

((
∩∞

j=1 ∪∞
i=j Ai

)c
)

= P
(
∪∞

j=1 ∩∞
i=j Ac

i

)
= 0.

Fix j ≥ 1, m ≤ ∞. Suffices to show P
(
∩∞

i=j A
c
i

)
= 0.

P
(
∩∞

i=j A
c
i

)
≤ P

(
∩m

i=j A
c
i

)
= Πm

i=jP
(

Ac
i
)

= Πm
i=j1− P (Ai) ≤ Πm

i=j1− P (Ai) ≤ Πm
i=je
−P(Ai)

= exp

(
−

m

∑
i=1

P (Ai)

)
.
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The first line follows from independence (if two events are independent so are the com-
plements). The second line follows from 1− x ≤ e−x.
True for all M ≥ j. Take M→ ∞, and get

P
(
∩∞

i=j A
c
i

)
≤ exp

(
−

m

∑
i=1

P (Ai)

)
M→∞−→ 0.

Note. Note that both lemmas can be stated in terms of lim inf by using the following fact

P
(
lim sup An

)
= P (∩∞

N=1 ∪∞
n=N An) = 1−P (∪∞

N=1 ∩∞
n=N Ac

n) = 1−P (lim inf Ac
n)

To wrap up, we have that if ∑∞
n=1 P (An) < ∞, then

P
(
lim sup An

)
= 0, P (lim inf Ac

n) = 1

Intuitively, Borel-Cantelli I tells us that if only finitely many of the {An}n≥1 occur, it must be that
all but finitely many of the {Ac

n}n≥1 occur!

If ∑∞
n=1 P (An) = ∞ and the events are mutually independent, then

P
(
lim sup An

)
= 1, P (lim inf Ac

n) = 0

Again, if infinitely many of the {An}n≥1 realize, then it must be that only finitely many of the
{Ac

n}n≥1 hold.

2.2 Strong law of large numbers

The below results are necessary to prove the finite first moment version of the strong law
of large numbers.

Theorem (Kolmogorov’s inequality). Let X1, . . . , Xn be mutually independent RVs. Assume
that σ2

i = E
(

X2
i

)
< ∞ and that E (Xi) = 0. Then for any λ > 0, we have

P

(
max
1≤i≤n

|X1 + . . . + Xi|≥ λ

)
≤ ∑n

i=1 σ2
i

λ2 .

Note. Think of this result as a multivariate generalization of Chebyshev’s inequality. It says that
if we look at the maximum of the absolute value of all partial sums of the Xis, we know that the
probability of it being larger than λ > 0 is bounded by the variance of the total sum of the Xis over
λ. Chebyshev’s inequality follows from setting n = 1.
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Proof. Let Sk = X1 + . . . + Xk . Let

A :=
{

max
1≤i≤n

|Si|≥ λ

}
= ∪n

i=1 {Si ≥ λ}

Ak :=

{
max

1≤i≤(k−1)
|Si|< λ, |Sk|≥ λ

}

Note that Ak ∩ Al = ∅ for k 6= l and A = ∪n
k=1 Ak. Then

P (A) = E (1A) = E

[
n

∑
k
1Ak

]
=

n

∑
k

E
[
1Ak

]
.

By definition, for event Ak, we have |sk|≥ λ ⇐⇒ s2
k/λ2 ≥ 1, so 1Ak ≤

S2
k

λ21Ak . Plugging
back into the expression,

P (A) =
n

∑
k=1

E
(
1Ak

)
≤

n

∑
k=1

E

[
s2

k
λ21Ak

] =
1

λ2

n

∑
k=1

E
[
s2

k1Ak

]
We already got λ2 at the denominator, so we just need to find the denominator. To find
such a bound for the ending sum:

n

∑
k=1

E
[
s2

k1Ak

]
≤

n

∑
k=1

{
E
[
s2

k1Ak

]
+ E

[
(sn − sk)

2
1Ak

]}

=
n

∑
k=1

E
[
s2

n1Ak

]
= E

[
s2

n

n

∑
k=1

1Ak

]
= E

[
s2

n1A

]
≤ E

[
s2

n

]
= V [sn] =

n

∑
i=1

σ2
i .

The first line follows from the below derivation

s2
k + (sn − sk)

2 = s2
n − 2sn2sk + 2s2

k = s2
n − 2sk (sn − sk)

=⇒ 1Ak

(
s2

k + (sn − sk)
2
)

= 1Ak s2
n − 2sk (sn − sk)1Ak

=⇒ E
[
1Ak s2

n − 2sk (sn − sk)1Ak

]
= E

[
1Ak s2

n

]
− 2E

[
1Ak sk (sn − sk)

]
However, in the final expectation, sk1Ak ⊥ (sn − sk), because the first depends on the
first k summands, whilst the second on t(Xk+1, . . . , Xn) so the expectation factorizes and
E (sn − sk) = 0, producing our desired result.
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Theorem. Let X1, . . . , Xn be mutually independent. Assume σ2
i := E

[
X2

i

]
< ∞ and E [Xi] = 0.

Assume variances ∑∞
i=1 σ2

i < ∞. Then limn→∞ ∑n
i=1 Xi exists and is finite a.s.

Proof. Let Sn := ∑n
i=1 Xi. We don’t know what the limit of Sn will be, so we’ll show that

{Sn}n is a Cauchy sequence a.s. Let

AN,r :=
{
∃ i, j ≥ N : |Si − Sj|≥

1
r

}
Then AN,r is increasing in r and decreasing in N. Consider the event{

{Sn}n≥1 is not Cauchy
}

= ∪∞
r=1 ∩∞

N=1 AN,r

Then,

P

({
{Sn}n≥1 is not Cauchy

})
= P

(
∪∞

r=1 ∩∞
N=1 AN,r

)
= lim

r→∞
lim

N→∞
P
(

AN,r
)

where the second equality follows from sequential continuity of limits. We will now show
that ∀ r ≥ 1 : limN→∞ P

(
AN,r

)
= 0. Define

BN,r :=
{
∃ i ≥ N : |Si − SN |≥

1
2r

}
Note that AN,r ⊆ BN,r by the triangle inequality, therefore P

(
AN,r

)
≤ P

(
BN,r

)
so we now

have to deal with an event that has only one index within it. Then

P
(

BN,r
)

= lim
Ni→∞

P

(
∃ i ∈ [N, Ni] : |Si − SN |≥

1
2r

)
where the equality follows from sequential continuity of P (we are just taking the limit of
a finite union of events). Note that Si − SN =N+1 + · · · + Ni is a partial sum of mutually
independent random variable, so we can apply Kolmogorov’s inequality and get

P

(
∃ i ∈ [N, Ni] : |Si − SN |≥

1
2r

)
≤ ∑Ni

i=N σ2
i

1/4r2

The object on the RHS might not have a limit but does have a lim sup, thus

P
(

BN,r
)
≤ lim sup

Ni→∞
4r2

Ni

∑
i=N+1

σ2
i = 4r2

∞

∑
i=N+1

σ2
i

Hence

lim sup
N→∞

P
(

BN,r
)
≤ 4r2 lim sup

N→∞

∞

∑
i=N+1

σ2
i = 0

which allows us to conclude that the probability that {Sn}n≥1 is not Cauchy is 0 a.s.
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Proposition (Kronecker Lemma). If {ak}k≥1 is such that ∑∞
k=1

ak
k is convergent, then 1

n ∑n
k=1 ak →

0 as n→ ∞.

Theorem. Let X1, X2, . . . be mutually independent with µi := E [Xi] and σ2
i := V (Xi) < ∞.

Suppose that ∑∞
k=1

σ2
k

k2 < ∞. Then

1
n

n

∑
i=1

(
Xi − µi

) a.s.−−−→
n→∞

0.

Proof. Let Yi := Xi−µi
i . Note that E [Yi] = 0 and V [Yi] = 1

i2 V [Xi] = σ2
i

i2 . By assumption

∑∞
i=1 V (Yi) = ∑∞

i=1
σ2

i
i2
< ∞. By the theorem above we know that lim ∑n

i=1 Yi = limn→∞ ∑i=1
Xiµi

i

exists and is finite. By Kronecker’s lemma{
ω ∈ Ω :

n

∑
i=1

Xi (ω)− µi

i
converges

}
⊆
{

ω ∈ Ω :
1
n

n

∑
i=1

(
Xi (ω)− µi

)
→ 0

}

To conclude, note that

1 = P

{ω ∈ Ω :
n

∑
i=1

Xi (ω)− µi

i
converges

} ≤ P

{ω ∈ Ω :
1
n

n

∑
i=1

(
Xi (ω)− µi

)
→ 0

}

Note. This statement require finite second moments so its stronger than the SLLN.

Theorem (SLLN). Let X1, X2, . . . be i.i.d. RVs with E
[
|Xi|

]
< ∞ and let m := E [Xi]. Let

Sn := ∑n
i=1 Xi. Then

Sn

n
a.s.−→ m.

Proof. This is a sketch. See class notes for details. Proceed in steps.
1. Kolmogorov’s inequality places a bound on ∑n

i=1 Xi.
2. Apply the theorem on convergence. After applying Kolmogorov’s inequality, summable

variances imply almost sure convergence.
3. Apply Kronecker’s Lemma to show that if ∑∞

k=1 ak/k is convergent, then

1
n

n

∑
k=1

ak → 0 a.s., n→ ∞.
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Moreover, that for mutually independent Xi with µi := E [Xi] and σ2
i := Var (Xi) <

∞. Suppose that ∑∞
k=1 σ2

k /k2 < ∞. Then

1
n

n

∑
i=1

(
Xi − µi

) a.s.−−−→
n→∞

0.

4. Up to this point we proved the SLLN for finite second moments, however we’d like
to prove it without this assumption. Assume that E [Xi] = 0 (centered iid rvs). Then,
use truncation argument by defining two variables

Yk := xk1|Xk |≤k, Zk := xk1|Xk |>k

so Xk = Yk + Zk. We will show that 1
n ∑n

i=1 Yi → 0 a.s. and 1
n ∑n

i=1 Zi → 0 a.s., so that
also 1

n ∑n
i=1 Xi → 0 a.s.

We start with the Zks. We will show something stronger, i.e. that a.s. only finitely
many of the Zks are non-zero. We use Borel-Cantelli I. Define the event Ak = {Zk 6= 0}.
We want to show that ∑∞

k=1 P (Ak) < ∞.
∞

∑
k=1

P (Ak) =
∞

∑
k=1

P
(
|Xk|> k

)
≤ E

[
|Xk|

]
< ∞

Let’s turn to the Xks. Let an :=
∫ n

n−1 xdF (x)−
∫ −n+1
−n xdF (x). Note that ∑∞

n=1 an = E
[
|X1|

]
<

∞. Note that∫ n

n−1
x2dF (x)−

∫ −n+1

−n
x2dF (x) ≤ an :=

∫ n

n−1
nxdF (x)−

∫ −n+1

−n
nxdF (x) = nan

Now
∞

∑
k=1

V (Yk)

k2 ≤
∞

∑
k=1

1
k2 E

[
Y2

k

]
=

∞

∑
k=1

1
k2

∫ k

−k
x2dF (x)

=
∞

∑
k=1

1
k2

k

∑
`=1

(∫ `

`−1
x2dF (x) +

∫ −`+1

−`
x2dF (x)

)

≤
∞

∑
k=1

1
k2

k

∑
`=1

`a`

=
∞

∑
`=1

`a`
∞

∑
k=`

1
k2

≤
∞

∑
`=1

`a`
4
`

= 4
∞

∑
`=1

a` = E
[
|X1|

]
< ∞
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By step 3 we showed that
1
n

∞

∑
k=1

(
Yk −E [Yk]

) a.s.→ 0

but we wanted to show that 1
n ∑n

k=1 Yk
a.s.→ 0. We need 1

n ∑n
i=1 E [Yk]→ 0

E [Yk] =
∫ k

−k
xdF (x) k→∞→

∫ ∞

−∞
xdF (x) = E [X1] = 0

Note. In the truncation argument we used the fact that ∑∞
k=1 P

(
|Xk|> k

)
≤ E

[
|Xk|

]
. Let

F (x) := P (X ≤ x), then

P
(
|Xk|> k

)
= P

(
|X1|> k

)
= P (X1 < −k) + P (X1 > k)

= F (−k− 0) +
(
1− F (k)

)
≤
∫ −k+1

−k
F
(
y
)

dy +
∫ k

k−1

(
1− F

(
y
))

dy

Then
∞

∑
k=1

P
(
|Xk|> k

)
≤
∫ 0

−∞
F
(
y
)

dy +
∫ ∞

0

(
1− F

(
y
))

dy

= −
∫ 0

−∞
xdF (x) +

∫ ∞

0
xdF (x)

=
∫
|x|dF (x) = E

[
|X1|

]
Recap. As a recap, we learnt three different ways of proving almost sure convergence
(Xn

a.s.→ m):
1. using the definition, i.e. P (limn→∞ Xn = m) = 1. This is quite hard in general and

also requires knowledge of the background probability space Ω. If you use this
approach you should check that Xn (ω)→ m pointwise ∀, ω ∈ Ω \ N .

2. using Borel-Cantelli lemma. To use this approach we need to define an auxiliary
sequence of events {An}n≥1 and show that

∞

∑
n=1

P (An) < ∞ or
∞

∑
n=1

P (An) = ∞
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If we are in the first case we can say that An realizes finitely many times in the
sequence, hence

P

(
lim sup

n→∞
An

)
= 0

If we are in the second case, assuming that the events are mutually independent,
then we know that the event An realizes infinitely many times, thus

P

(
lim sup

n→∞
An

)
= 1

Sometimes it is required to use both lemmas to bound the value of the lim sup. This
lemma is also useful for the lim inf if we are able to construct a lower bound for
this quantity, as we can conclude by saying c ≤ lim infn→∞ An ≤ lim supn→∞ An ≤
c. Another common trick is to compute the probability P (An ≥ ε) , ∀ ε > 0 to get
something tractable and convergent as an upper bound of such quantity. Then, since
it holds for all ε, we take the limit as ε → 0. Finally, when we want to use Borel-
Cantelli I, we want to upper bound our quantity with something more tractable that
we are able to show it is finite, whilst with Borel-Cantelli II we use want to show
that a lower bound is divergent.

3. Using the SLLN, once we know that E
[
|Xi|

]
< ∞, we can claim that Sn/n a.s.→ E [Xi]
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3 Central Limit Theorem and Characteristic Functions

LLNs give us information on the first order behavior of sums of RVs. However, we might
be interested in second order behavior as well. The CLT tells us that

Sn −m · n√
n

d→ N
(

0, σ2
)

3.1 Central Limit Theorem

Definition (Convergence in distribution/Weak Convergence). Let F denote the CDF of X
where F (x) := P (X ≤ x). Let {Xn}n≥1 be a sequence of real-valued RVs such that Xn has a
CDF Fn. Let X be a RV with cdf F. If

Fn (x) −−−→
n→∞

F (x)

for every continuity point x of F, then we say that {Xn}n≥1 converges in distribution to X and
that {Fn}n≥1 converges weakly to F.

Note. Again, we fix an x and then the statement we want to verify becomes deterministic.

A continuity point of F is a point where F is continuous. Thus we just require that F is non-
decreasing, but it can be discontinuous.

The deep result behind this is that we can use F to fully characterize P.

We usually denote it with

Xn
d→ X, Xn

D→ X, Xn
w→ X, Xn =⇒ X, Xn

L→ X, L (Xn)→ L (X)

or simply using Fn and F in place of Xn and X. Also sometimes we abuse notation and write
Xn =⇒ F.

Example (Why continuity points?). Consider Xn ∼ U
(
0, 1/n

)
. Consider

Fn (x) =

0, x < 1/n

1, x ≥ 0
, Fn (x) n→∞−−−→

0, x ≤ 0

1, x > 0
.

However, we usually define CDFs as being right continuous, thus

F (x) n→∞−−−→

0, x < 0

1, x ≥ 0.
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which is the CDF of δ0. We have Fn ⇒ F, ∀x 6= 0, where we can remove 0 because it is a disconti-
nuity point of F, thus we care about pointwise convergence in all other points.

Note. The following expressions are equivalent

Fn (x)→ F (x) ⇐⇒ P (Xn ≤ x)→ P (X ≤ x) ⇐⇒ E
[
1(−∞,x) (Xn)

]
→ E

[
1(−∞,x) (X)

]
.

Using the definition of weak convergence might not be immediate, thus we need a charac-
terization. In particular, we will see that to show weak convergence it is sufficient to show
that some particular expectations of our random variables need to coincide. In general, it
is easier to deal with expectations.

Theorem (Characterization of weak convergence). Xn ⇒ X if and only if E
(

g (Xn)
)
→

E
(

g (X)
)

for every continuous and bounded function g.

Proof. Will only show (⇐= ). In general, half-line indicator functions can be approxi-
mated by continuous and bounded functions. The intuition is that you can “bound” the
jump with linear functions. Define function gx,ε that is 1 until x, declining until reaching
0 at x + ε and staying there. Then,

gx−ε,ε (·) ≤ 1(−∞,x) (·) ≤ gx,ε (·) ≤ 1(−∞,x+ε) (·)

and

Fn (x) = E
[
1(−∞,x) (Xn)

]
≤ E

[
gx,ε (Xn)

]
≤ E

[
1(−∞,x+ε] (Xn)

]
≤ Fn (x + ε) .

Also, F (x) ≤ E
[
gx,ε (X)

]
≤ F (x + ε). Now, want to squeeze F by taking the limits

F (x− ε) ≤ E
[
gx−ε,ε (X)

]
= lim

n→∞
E
[
gx−ε,ε (Xn)

]
≤ lim inf

n→∞
Fn (x)

≤ lim sup Fn (x) ≤ lim
n→∞

E
[
gx,ε (Xn)

]
= E

[
gx,ε (X)

]
≤ F (x + ε)

Then, F (x− ε) ≤ lim infn→∞ Fn (x) ≤ lim supn→∞ Fn (x) ≤ F (x + ε).
Taking ε↘ 0, if x is a continuity point, then LHS, RHS converge to F (x) and limn→ Fn (x) =
F (x).

Definition (Converges weakly). Let S be a complete metric space with its Borel sigma-algebra.
Let
{

µn
}

n≥1 and µ be measures on S. We say µn converges weakly to µ denoted µn ⇒ µ if∫
gdµn →

∫
gdµ

for every continuous bounded g : S→ R.
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Note (Proving weak convergence). Which functions to check? Cb is a rather broad class of
functions. Will later show that it suffices to check characteristic functions. Only need to check
trigonometric functions, eg. sin (tx) , cos (tx) , t ∈ R.

Theorem (Central limit theorem). Let X1, X2, . . . be a sequence of iid real-valued random vari-
ables. Assume E

(
X2

i

)
< ∞. Let Sn := X1 + . . . + Xn. Then

Sn −E [Sn]√
V (Sn)

⇒ N (0, 1) .

That is, for every x ∈ R,

P

(
Sn −E (Sn)√

V (Sn)
≤ x

)
→
∫ x

−∞

1√
2π

e−1/2z2
dz.

Note, E [Sn] = nE (X1) and V (Sn) = nV (X1) ⇐⇒

Sn − nE [Xn]√
nV (Xn)

.

Note. Note that the numerator of is Op (n), whereas the denominator is Op
(√

n
)
, thus the frac-

tion is Op
(√

n
)
. The fluctuations of this fraction are distributed as a Gaussian random variable.

Proof (Lindeberg). To make the proof easier, assume there exists C ∈ R++ such that ∀ i ∈N,
E
(
|Xi|3

)
≤ C (note that this is a uniform bound on all the Xis). On the other hand, we will

not assume Xi have the same distribution. Only need that they are mutually independent.
May assume without loss of generality that Xi is mean zero and variance one. Otherwise,
can normalize and define Yi := Xi−E[Xi ]√

V[Xi ]
. Now, it sufficient to show Sn/

√
n⇒ N (0, 1).

We will use the characterization above for a particular dense class of functions. Let g ∈ C3
b,

that is let g be three times differentiable with g, g′, g′′, g′′′ be continuous and bounded. The
space of these functions is dense in Cb. By the characterization theorem, it suffices to show
that

E

[
g
(

Sn/
√

n
)]
→ E

[
g (Z)

]
, ∀ g ∈ C3

b (?)

where Z ∼ N (0, 1).
Before proceeding with the proof, let’s make a few notes.
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1. Observation 1: If Zi
iid∼ N (0, 1), then

Z1 + Z2 + . . . + Zn√
n

is also a standard Gaussian RV. Let Tn := Z1 + . . . + Zn. Thus

Tn√
n
⇒ Z.

CLT holds exactly for the Gaussian case without taking the limit.
2. Observation 2: Compare the summands to Gaussians. We can reframe our goal (?)

as

E

g

(
Sn√

n

)−E

g

(
Tn√

n

) −−−→
n→∞

0.

3. Lindeberg’s swapping trick: Exchange Xi to Zi one-by-one.
Assume that Xis and Zi live in the same probability space and they are all mutually inde-
pendent. Define the following random variables

S(0)
n = X1 + X2 + · · · + Xn = Sn

S(1)
n = Z1 + X2 + · · · + Xn

...

S(
j)

n = Z1 + Z2 + · · · + Zj + Xj+1 + · · · + Xn

...

S(n)
n = Z1 + Z2 + · · · + Zn = Tn

Then we can write our difference of functions as

g

(
Sn√

n

)
− g

(
Tn√

n

)
=

n

∑
i=1

g

S(
j−1)

n√
n

− g

S(
j)

n√
n




by simply using the telescoping sum and the fact that S(0)
n = Sn and S(n)

n = Tn.

Then, note that

S(
j−1)

n = Rj + Xj

S(
j)

n = Rj + Zj
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where
Rj = Z1 + .. + Zj−1 + Xj+1 + . . . + Xn.

Finally, Rj, Xj, Zj are mutually independent. Key idea is to take a third order Taylor-Young
expansion of g around r

g (r + x) = g (r) + xg′ (r) +
x2

2
g′′ (r) +

x3

3!
g′′′
(
r′
)

where r′ ∈ [r, r + x]. Applying this to R and X, which are independent

E
[
g (R + X)

]
= E

[
g (R)

]
+ E

[
Xg′ (R)

]
+ E

[
X2

2
g′′ (R)

]
+ E

[
X3

3!
g′′′
(

R′
)]

= E
[
g (R)

]
+ E [X]E

[
g′ (R)

]
+ E

[
X2

2

]
E
[
g′′ (R)

]
+ E

[
X3

3!
g′′′
(

R′
)]

Next, apply this to R = Rj/
√

n and X = Xj/
√

n.

E

g

S(
j−1)

n√
n


 = E

g

(
Rj√

n
+

Xj√
n

)

= E

g

(
Rj√

n

) + E

[
Xj√

n

]
E

g′
(

Rj√
n

) +
1
2

E

( Xj√
n

)2
E

g′′
(

Rj√
n

)
+

1
3!

E

( Xj√
n

)3

g′′′
(

R′j√
n

)
= E

g

(
Rj√

n

) + 0E

g′
(

Rj√
n

) +
1

2n
E

g′′
(

Rj√
n

) +
1

6n3/2
E

X3
j g′′′

(
R′j√

n

)
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In the same way,

E

g

S(
j)

n√
n


 = E

g

(
Rj√

n
+

Zj√
n

)

= E

g

(
Rj√

n

) + 0 ·E

g′
(

Rj√
n

) +
1

2n
E

g′′
(

Rj√
n

)
+

1
6n3/2

E

Z3
j g′′′

(
R̃j√

n

)
Taking the difference between the two expressions, the third order terms remain

E

g

S(j−1)
√

n


−E

g

S(j)
√

n


 =

1
6n3/2

E

X3
j g′′′

(
R′j√

n

)−E

Z3
j g′′′

(
R̃j√

n

)


Bounding the third derivative by some absolute constant,∣∣∣∣∣∣∣∣E
g

S(j−1)
√

n


−E

g

S(j)
√

n



∣∣∣∣∣∣∣∣ ≤

c
(

g
)

n3/2

after assuming a finite third absolute moment.
Finally, after plugging back into the telescoping sum,

E

g

(
Sn√

n

)−E

g

(
Tn√

n

) ≤ n

∑
j=1

∣∣∣∣∣∣∣∣∣E
g

S(
j−1)

n√
n


−E

g

S(
j)

n√
n



∣∣∣∣∣∣∣∣∣

≤
n

∑
j=1

C̃
n3/2

=
C̃√

n
.

Theorem (Lindeberg’s CLT for triangular arrays). Let Xn,1, Xn,2, . . . , Xn,n be mutually inde-
pendent random variables. Let row sum

S̃n :=
n

∑
k=1

Xn,k.
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Assume that E
[
Xn,k

]
= 0, ∀n, k. Also assume that

vn :=
n

∑
k=1

E
[

X2
n,k

]
→ 1, n→ ∞

gn (ε) :=
n

∑
k=1

E
[

X2
n,k · 1|Xn,k≥ε|

]
→ 0, n→ ∞.

Then
S̃n ⇒ N (0, 1) .

Proof. Proof is basically the same as above, but requires a more clever argument about
the remainder term in the Taylor expansion. Use truncation argument for |Xn,k|≤ ε (from
third order expansion) and |Xn,k|> ε use second order expansion.

3.2 Characteristic functions

Definition (Characteristic function). Given a RV X, its characteristic function φX : R→ C

is defined by
φX (t) := E

[
eitX
]

= E
[
cos (tX)

]
+ iE

[
sin (tX)

]
.

This is, in other words, a Fourier transform.

Proposition (Characteristic functions). Below are a few simple properties.
1. φX (0) = 1.
2. φX (−t) = φX (t). Therefore, φX is real ⇐⇒ the distribution of X is symmetric around

zero i.e. X d= −X.
3. |φX (t) |≤ 1.
4. t 7→ φX (t) is uniformly continuous on R.

Proof.

|φ (t)− φ (s) | = |E
[
eitX − eisX

]
|≤ E|eitX − eisX| (Jensen’s inequality)

= E
[
|eitX − eisX|1|X|≤M

]
+ E

[
|eitX − eisX|1|X|>M

]
≤ |t− s|·M + 2P

(
|X|> M

)
Given ε > 0, choose M such that P

(
|X|> M

)
≤ ε

4 . The, let δ := ε/2M.
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5. φ is positive definite in the following sense: ∀n, ∀t1, . . . , tn ∈ R, the matrix
{

φ
(

ti − tj

)}N

i,j=1

n

∑
i,j=1

ziφ
(

ti − tj

)
zj ≥ 0.

Proof.
n

∑
i,j=1

ziφ
(

ti − tj

)
zj =

n

∑
i,j=1

zizjE

[
ei(ti−tj)X

]

= E

 n

∑
i,j=1

zizjeitiXeitjX

 (Property 2)

= E

[
|

n

∑
k=1

zkeitX|2
]
≥ 0

Theorem (Bochner’s). Let φ : R→ C. If
1. φ (0) = 1,
2. φ is continuous at t = 0,
3. φ is positive definite,

then φ is a positive definite function for some RV. That is there exists a CDF F such that

φ (t) =
∫

eitXdF (x) .

Note. This is good to know but rarely used in practice.

Property (Additional properties of characteristic functions). Below are a few useful proper-
ties.

1. Linear transformation of RVs. For constants a, b and random variable X,

φaX+b (t) = eitbφX (at)

Proof. Follows by definition E
[
eit(aX+b)

]
= eitbE

[
ei(at)X

]
= eitbφX (at).

2. If X, Y are independent, then X + Y

φX+Y (t) = φX (t) φY (t) .
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Proof.
φX+Y (t) = E

[
eit(X+Y)

]
= E

[
eitX
]

E
[
eitY
]

= φX (t) φY (t)

3. Fourier transform of density: If F′ = f , then

φX (t) =
∫ ∞

−∞
eitx f (x) dx = f̂ (t) .

Example (Characteristic functions). Proofs of the below examples are left as exercises.
1. Bernoulli: X ∼ Be

(
p
)
⇐⇒ φX (t) = eit + 1− p.

2. Binomial: X ∼ Bin
(
n, p

)
⇐⇒ φX (t) =

[
peit + 1− p

]n
from above and independence.

3. Rademacher: φX (t) = 1
2

[
eit + e−it

]
= cos (t).

4. Uniform: X ∼ Uni (a, b) ⇐⇒ φX (t) = eitb−eita

it(b−a) . As a common example, X ∼
Uni (−1, 1) ⇐⇒ φX (t) = sin(t)

t .

5. Normal: X ∼ N
(

µ, σ2
)
⇐⇒ φX (t) = eitµ − t2σ2/2.

Proof. Suffices to show for standard Gaussian because of result on translation and
scaling. Before beginning, note that

E
(

iXeitX
)

= E
[
iX
(
cos (tX) + i sin (tX)

)]
= iE

(
X cos (tX)

)
−E

[
X sin (tX)

]
= −E

[
X sin (tX)

]
.

Since a Gaussian is symmetric and the cosine function is odd, the cosine term must
equal zero.
Proceeding with the proof, take the derivative with respect to t of the characteristic
function

φ′X (t) = E
[
iXeitX

]
= −

∫
R

x sin (tx) fX (x) dx.

Then, from the Fourier transform property and the result above, f ′X (x) = −x fX (x).
Plugging this back into the expression and performing integration by parts in the
second equality,

φ′X (t) =
∫

R
sin (tx) f ′X (x) dx = −

∫
R

t cos (tx) fX (x) dx = −tφX (t) .

Then, φ′ (t) = −tφ (t) , φ (0) = 1. Thus φ (t) = e−t2/2.
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6. Exponential: X ∼ Exp (λ) ⇐⇒ φX (t) = λ
λ−it .

7. Cauchy: φX (t) = e−|t|.

Proposition. If E
[
|X|k

]
< ∞, then φX ∈ Ck, i.e. it is continuous and k-times differentiable, and

the derivatives are given by
φ
(k)
X (t) = E

[
(iX)k eitX

]
.

In particular, for t = 0,
φ
(k)
X (0) = ikE

(
Xk
)

.

Proof. Consider the case for k = 1. Iterate forward for larger k.

φ′ (t) =
d
dt

φ (t) =
d
dt

E [itX]

= lim
h→0

1
h

(
E
[
ei(t+h)X

]
−E

[
eitX
])

(Definition of derivative)

= lim
h→0

E

[
1
h

(
ei(t+h)X − eitX

)]
(Linearity of expectation)

= E

[
lim
h→0

1
h

(
ei(t+h)X − eitX

)]
(DCT)

= E
[
iXeitX

]
(Definition of derivative d

dt φ (t))

Note that the order of the limit and expectation can be interchanged because of the Dom-
inated Convergence Theorem with dominating function 2|x|+1. We need to bound∣∣∣∣1h (ei(t+h)X − eitX

)∣∣∣∣
as a sequence of h.

Proposition (Taylor expansion of characteristic function about t = 0). If E
[
|X|m

]
< ∞,

then

φX (t) =
m

∑
k=0

E
[
(iX)k

] tk

k!
+ o (tm) .

Proof. Consider the Taylor expansion of eax about x = 0

eax = 1 + ax + a2 x2

2
+ a3 x3

3!
+ · · · an xn

n!
+ o (xn)
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Hence, regrouping, substituting a with iX, and taking expectations on both sides

E
[
eitX
]

=
n

∑
k=0

E
[
(iX)k

] tk

k!
+ o (tn)

Theorem (CLT and characteristic functions). X1, X2, . . . are iid with mean 0 and variance 1
(i.e. we are assuming finite second moments). Let Sn = X1 + . . . + Xn. Then

Sn√
n
⇒ N (0, 1) .

Proof. Below is a sketch of the proof. Consider the characteristic function of Sn√
n

φSn/
√

n (t) = φSn

(
t√
n

)
=

n

∏
i=1

φXi

(
t√
n

)
=

φX1

(
t√
n

)n

.

The first equality follows from scaling. The last two equalities hold from i. and i.d.,
respectively. Fix t ∈ R and take a Taylor expansion of φX1 about t = 0. Assuming finite
first/second moments we get

φX1 (s) = 1 + iE [X1] s− 1
2

E
[

X2
1

]
s2 + o

(
s2
)

= 1− s2/2 + o
(

s2
)

, s→ 0.

where the minus sign after the first equality comes from i2 = −1 and we used the mean
zero and variance one assumptions in the second equality.
If we think of t/

√
n with t fixed and as n → ∞, then φX1

(
t/
√

n
)

= 1 − t2

2n + o
(

t2/n
)

.
Plugging into the previous expression,

φSn/
√

n (t) =
(

φX1

(
t/
√

n
))n

=

(
1− t2

2n
+ o
(
1/n

))n

→ e−t2/2,

which is the characteristic function of a standard Gaussian.

Note. We did not show uniqueness of characteristic functions or convergence properties. Neither
are trivial.
Note that we still need to show that characteristic functions characterize distributions and conver-
gence of characteristic functions implies convergence in distribution.
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The following theorem is a technical one, but its corollary implies that if two random
variables have the same characteristic function, then they are equal.

Theorem (Lèvy’s inversion). Suppose that X has CDF FX and characteristic function φX. For
every a < b and t, define

ψa,b (t) :=
1

2π

∫ b

a
e−itudu =

e−itb − e−ita

−2πit
.

Then
lim

T→∞

∫ T

−T
ψa,b (t) φX (t) =

1
2
[
FX (b) + FX (b−)

]
− 1

2
[
FX (a) + FX (a−)

]
.

where FX (x−) := lims→x− F (s). When a, b are continuity points of F, then the limit is FX (b)−
FX (a) = P (a < X ≤ b). Furthermore, if

∫
|φX (t) |< ∞, then X has a bounded continuous

probability density function fX and

fX (x) =
1

2π

∫
R

e−itxφX (t) dt.

Note. A few points on the theorem:
• This is a special case of Fourier inversion formula (integrated). Holds even in the absence of

a density function.
• If the characteristic function of a random variable is integrable, then it admits pdf and there

is a way to derive the pdf from the characteristic function

Corollary. If X, Y have the same characteristic functions (that is φX (t) = φY (t)) them X d= Y.

Proof. Exercise using the formula above.

Theorem (Lèvy’s continuity). Let {Fn}n≥1 be a sequence of CDFs with characteristic functions{
φn
}

n≥1.
1. If Fn ⇒ F then φn (t)→ φ (t) =

∫
R

eitxdF (x) , ∀t ∈ R.
2. Suppose that ∀t ∈ R, limn→∞ φn (t) exists and denote it by φ (t). Suppose that φ is

continuous at t = 0. Then there exists CDF F such that

φ (t) =
∫

R
eitxdF (x) , ∀t ∈ R

and Fn ⇒ F.
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Note. The theorem is not an if and only if because for 2. we require the stronger condition that φ

is continuous at t = 0. More importantly, we have now a new tool to show weak convergence of
random variables.

Definition (Tightness in R). A sequence of probability measures on R {Fn}n≥1 is uniformly
tight if for every ε > 0, there exists Kε < ∞ such that

Fn
(
[−Kε, Kε]

)
≥ 1− ε, ∀n ≥ 1.

Note. Uniform tight random variables are often called bounded in probability. The ”uniform”
bit comes from the fact that the same Kε can be chosen for all elements of the sequence.

Example (Tightness). Tightness is about requiring that most of the mass does not escape to infin-
ity

1. U (−n, n) is not tight because there is no finite interval containing most of the mass. If you
visualize the pdf of a continuous uniform it always has ‘fat tails’.

2. {δn}n≥1 is not tight for the same reason. Indeed, the pmf is a unique point that is pushed to
infinity.

3.
{

δ(−1)n

}
is tight, simply take K = 1. The pmf is a unique point (either 1 or -1).

Note in the last case the series of random variable does not converge weakly, however it is tight. So
tightness is a weaker requirement than weak convergence.

Definition (Tightness (general)). Let S be a complete metric space. A sequence of measures{
µn
}

n≥1 is tight if ∀ ε > 0, there exists compact set K ⊂ S such that

µn (Kc) ≤ ε, ∀n ≥ 1.

Proposition. If Fn ⇒ F, then {Fn}n≥1 is tight.

In general, the converse is not true.

Theorem (Helly). If {Fn}n≥1 is tight, there exists a subsequence {nk}k≥1 and F such that Fn,k ⇒
F as k→ ∞.

Theorem (Prohorov). Let S be a complete separable metric space. If
{

µn
}

n≥1 is tight, then there
exists a weakly convergent subsequence

{
µnk

}
k≥1.

Note (Framework for showing weak convergence (Prohorov)). Below are a few general steps,
broadly applicable for many problems.
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1. Show tightness.
2. Identify the limit.
3. Show uniqueness of the limit.
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4 Stochastic processes

4.1 Introduction and overview

Setup
• (Ω,F, P) probability space
• T index set representing time (eg. R, R+, [a, b] , Z, Z+, . . .).
• S state space, usually a locally compact, complete metric space.

Definition (Stochastic process). A stochastic process is a measurable function t 7→ Xt, X :
T×Ω→ S or, alternatively, ∀t ∈ T, X (t, ·) : Ω→ S. Consider the following characterizations

1. t ∈ T fixed, then Xt (t, ·) : Ω→ S is an S−valued random variable (marginal).
2. ω ∈ Ω fixed. Then X (·, ω) : T→ S is a random trajectory.
3. X : Ω→ ST =

{
space of S-valued functions with domain T

}
Example (Stochastic processes). Below are a few motivating examples.

1. {Xn}n≥0 iid RVs, where the index set is N.
2. Xn = ∑n

i=1 Yi where Yi are iid. Such process is called a random walk.
• RW on Z, Zd.
• Simple random walk defines Yi ∈ {±1}.
• Simple symmetric random walk assigns SRW with probabilities 1/2 and 1/2.
• Biased random walk assigns SRW different probabilities (eg. gambler’s ruin)

3. Can also define random walks on graphs, like Google’s PageRank algorithm.
4. Epidemics (or their spread) can be modeled as a stochastic process.
5. Relatedly, stories on social media can be modeled as stochastic processes.
6. Queuing theory.
7. Card shuffling.
8. Brownian motion.
9. Extreme value theory: modeling rare events e.g.Mn := max1≤1≤n Xi.

10. MCMC.

4.2 Markov processes

Intuitively, the key defining property is that conditioning on the past and present is the
same as conditioning on just the present. In the below discussion, will focus on the sim-
plest case (discrete time/space).
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Definition (Markov chain). Let {Xn}n≥0 be a stochastic process taking values in some state
space S. We say that {Xn}n≥0 is a Markov chain on a discrete state space S if

P
(
Xn+1 = an+1|Xn = an, Xn−1 = an−1, . . . , X0 = a0

)
= P

(
Xn+1 = an+1|Xn = an

)
for all n ≥ 0 and for all a0, a1, . . . , an+1 ∈ S. This is what is usually denoted as Markov property.
Will note an

0 := (a0, . . . , an).

Note. The Markov property tells us that to learn about the future the only thing we need is the
past. Once we condition on the present, the past and the future become independent of each other.

Property (Decomposition of Markov Processes). Markov chains can be decomposed over time
as

P (Xn
0 = an

0) = P
(

Xn = an | Xn−1
0 = an−1

0

)
P
(

Xn−1
0 = an−1

0

)
(intersection)

= . . . (Iterate)

= P
(

Xn = an | Xn−1
0 = an−1

0

)
P
(

Xn−1 = an−1 | Xn−2
0 = an−2

0

)
· . . . ·P

(
X1 = a1 | X0 = a0

)
P (X0 = a0)

= P (Xn
0 = an

0) = P (X0 = a0)
n

∏
j=1

P
(

Xj = aj | Xj−1 = aj−1
0

)
(true in general)

= P (Xn
0 = an

o ) = P (X0 = a0)
n

∏
j=1

P
(

Xj = aj | Xj−1 = aj−1

)
(Markov property)

Definition (Transition/Stochastic matrix). A transition or stochastic matrix is defined as
Pxy
(

j
)

:= P
(

Xj = y|Xj−1 = x
)

, where Pxy
(

j
)

is termed transition probability. In many
cases, transition probabilities do not depend on time. These are called time homogenous Markov
chains.

Note. Pxy
(

j
)

is the probability that the MC switches from x to y at time j. If the MC is time
homogeneous the same Pxy

(
j
)

just depends on the time shift j and not on the period t.

Definition (Stochastic matrix). Matrix P is a stochastic matrix if
1. Pxy ≥ 0, i.e. each element is non-negative
2. ∑y∈S Pxy = 1 rows sum to one.
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Note. The two requirements imply that Pxy
(

j
)
∈ [0, 1]. Moreover, each row represents a proba-

bility mass function that depends on x (and j of course). Each row hence represents the probability
we reach any state starting from x in j steps.

Property. Time homogenous Markov chains are entirely summarized by
1. an initial distribution P (X0 = a0)

2. a transition matrix P
Indeed, for time-homogenous MCs

P (Xn
0 = an

0) = P (X0 = a0)
n

∏
j=1

Paj−1 ,aj

Proposition. P
(
Xn = y | X0 = x

)
= (Pn)xy.

Proof. Use induction. The base step n = 1 follows from definition, indeed

P
(
X1 = y | X0 = x

)
:= Pxy

. Proceed to the inductive step. Suppose we know the statement is true for n, i.e.

P
(
Xn = y | X0 = x

)
= (P)n

xy

Then

P
(
Xn+1 = y | X0 = x

)
= ∑

z∈S
P
(
Xn+1 = y, Xn = z | X0 = x

)
(law of total probability)

= ∑
z∈S

P
(
Xn+1 = y | Xn = z, X0 = x

)
P
(
Xn = z | X0 = x

)
= ∑

z∈S
P
(
Xn+1 = y | Xn = z

)
P
(
Xn = z | X0 = x

)
(Markov property)

= ∑
z∈S

(Pn)xz Pzy (Inductive hypothesis)

=
(

Pn+1
)

xy
.

Note (Interpretation of transition matrix). Note two things
• Column vectors→ think as functions. The transition matrix acts forward on column vectors
• Row vectors→ think as measures. The transition acts backward on row vectors
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1. Probabilistic interpretation: Let f : S→ R be a column vector. Then(
Pn f

)
(x) = E

[
f (Xn) | X0 = x

]
.

Proof. (
Pn f

)
(x) = ∑

y∈S
(Pn)xy f

(
y
)

= ∑
y∈S

P
(
Xn = y | X0 = x

)
f
(
y
)

(From previous claim)

= E
[

f (Xn) |X0 = x
]

.

Therefore, if we are interested in the expectation of any transformation f (·) of a Markov
Chain, we just need to compute Pn f

2. µ : S → R+; ∑x∈S µ (x) = 1; µ is a probability measure on S. This is a row vector. If
P
(
X0 = y

)
= µ

(
y
)
, then

(
µPn) = P (Xn = x).

Proof. (
µPn) (x) = ∑

y∈S
µ
(
y
)
(Pn)yx

= ∑
y∈S

µ
(
y
)

P
(
Xn = x | X0 = y

)
= ∑

y∈S
P
(
X0 = y

)
P
(
Xn = x | X0 = y

)
= P (Xn = x) .

Proposition. If the initial distribution is µ, then the distribution at time n is µPn.

Definition (Stationary distribution). If πP = π, then πPn = π, so if the initial distribution is
π, then the distribution at every time n is π. We call such π a stationary distribution.

4.3 Classification of states

Definition (Closed). A ⊂ S is closed if P (A→ Ac) = 0.
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Example. The sets ∅ and S are closed. If A and B are closed, so are A ∪ B and A ∩ B

Definition (Closure). Let A ⊂ S. The closure of A is

A := ∩A⊆B,B is closedB.

In words, the closure of A is the smallest closed set containing A.

Definition (Irreducible). Suppose A = A and A non-empty. A is irreducible if

∀ B ⊆ A, B = A, B 6= ∅

Another definition is that P is irreducible if and only if ∀ x, y ∈ S, ∃ n0 = n0
(
x, y
)

such that
(Pn0)xy > 0.

Note. There can be closed sets that are not irreducible, for example the set composed by two closed
sets is not irreducible because you can always split it in two irreducible smaller sets. If we add the
property of aperiodicity, then n0 is uniform for all points in the state space.

Definition (Absorbing state). x ∈ S is an absorbing state if {x} is closed.

Definition (Inessential state). x ∈ S is an inessential state if it is not part of any irreducible
component. If x is not inessential, it is essential. An alternative terminology is transient and
recurrent. Recurrent states can be either positive recurrent (finite number of steps to come back)
or null recurrent (the markov chain will return in the state with probability 1 but in an infinite
number of steps).

Definition (Irreducible Markov Chain). A Markov Chain is irreducible if S is irreducible.

Proposition (State space decomposition). If S is finite, then

S = C1 ∪ · · · ∪ Cr ∪ D

for irreducible components Cj and inessential states D.

Example (Classification example). Consider Figure ??, which shows a connected graph of some
Markov process.

• Closed: {C, D} , {E, F, G}
• {C} = {C, D}
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• {E, F, G} , {C, D} are irreducible
• {H} is an absorbing state
• {C, D} , {H} , {E, F, G} are irreducible components. {A, B} give inessential states

In the long-run, inessential states do not matter. Will focus primarily on irreducible
Markov chains. Can use first step analysis (conditioning on first step of Markov chain),
possible to compute

• Probabilities of ending up in different irreducible parts of the a Markov chain.
• Expected time to reach an irreducible component.

Proposition. C ⊆ S is irreducible if and only if C = C (C is minimal closed) and ∀x, y ∈ C, there
exists a path from x to y.

Proposition. If S is finite, then there always exists a non-empty irreducible component.

Proposition. If S is not finite, then there does not need to exist an irreducible component.

Definition (Period). x ∈ S. Period per (x) := GCD of lengths of walks returning to x. In the
example, per (H) = 1, per (D) = GCD (2, 3) = 1, per (E) = GCD (3, 6, 9, . . .) = 3.

Proposition. If x, y ∈ S are in the same irreducible component, then per (x) = per
(
y
)
.

Corollary. The period of all states within an irreducible component is the same.

Definition. The period of an irreducible component is the period of any of its components. The
period of an irreducible Markov Chain is the period of any of its components.

Definition (Aperiodic). A MC is aperiodic if the period is 1.

Example. The period of a simple random walk on Z is 2. Even times are associated with even
locations. Odd times are associated with odd locations.

Definition. A state is ergodic if it is positive recurrent and aperiodic.

Definition (Ergodic). P is ergodic if it is irreducible and aperiodic.

Definition (Stationary distribution). π is a stationary distribution of the Markov chain
with transition matrix P if πP = π, where π is a probability distribution on S (i.e. π (x) ≥
0, ∑x∈S π (x) = 1).

4 STOCHASTIC PROCESSES



4.3 Classification of states 61

Natural questions about the stationary distribution of a Markov Chain regard: existence,
uniqueness, and convergence in law.

Example. Below are a few simple examples.
1. RW on a connected undirected graph G = (V, E).
2. RW on a disconnected graph. Suppose nodes A, B are disconnected from nodes C, D. Then

π1 =
(
1/2, 1/2, 0, 0

)
and π(2) =

(
0, 0, 1/2, 1/2

)
are stationary distributions for (πA, πB, πC, πD).

There is actually an entire one-parameter family of stationary distributions
(
α, α, α− 1/2, α− 1/2

)
,

for α ∈
[
0, 1/2

]
3. Suppose P is doubly stochastic, that is also its column sums are one. Then π is uniform,

that is
πx =

1
|S| , ∀ x ∈ S

There is not necessarily a unique stationary distribution (look at point 2)
4. Suppose that P, π satisfy

πxPxy = πyPyx, ∀x, y ∈ S.

Above are known as the detailed balance equations. Then we say that P is reversible with
respect to π. In this case, π is a stationary distribution of P.

Note. Can interpret πxPxy as a probability/mass flow of x to y in stationarity (and vice
versa). At equilibrium, there is “microscopic” reversibility. Can’t distinguish the direction
of time, hence the name.

5. It is often useful to interpret the action of the matrix P when left or right multiplied. If it
is left multiplied by a vector µ0 whose components are the probability that the chain is in a
certain state, i.e.

µ0 =


P (X0 = 1)
P (X0 = 2)

...
P
(
X0 = |S|

)


then the resulting element of µ0P is

(
µ0P

)
s =

|S|

∑
i=1

µ0iPis =
|S|

∑
i=1

P
(
X1 = s | X0 = i

)
P (X0 = i) =

|S|

∑
i=1

P (X1 = s, X0 = i) = P (X1 = s)
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What happens if instead the transition matrix P is right multiplied by a vector X? Simply
we compute the expected value

(PX)i =
|S|

∑
s=1

PisXs =
|S|

∑
s=1

P
(
X1 = s | X0 = i

)
Xs = E

[
Xs | X0 = i

]
therefore PX is a vector containing the expected value of X conditional on a specific past
value of X0

4.4 Existence

Property (P acting forward on functions). Natural space to consider is

l∞ (s) =
{

f : S→ R,
∥∥ f
∥∥

∞ < ∞
}

.

1. P keeps positivity. If f ≥ 0 (coordinate-wise), then P f ≥ 0.
2. P is a contraction ‖P‖∞,∞ ≤ 1, where ||P||∞,∞= sup f 6=0

||P f ||∞
|| f ||∞ .

Proof. ∥∥P f
∥∥

∞ = max
x
|P f (x) |= max

x
|∑

y
Pxy f

(
y
)
|

≤ max
x ∑

y
Pxy| f

(
y
)
|≤ max

x

∥∥ f
∥∥

∞ ∑
y

Pxy =
∥∥ f
∥∥

∞ .

The first equality follows from the definition of the infinity norm and the definition
of P f (x).

3. P1 = 1 where 1 is a vector of ones. Equivalently, 1 is an eigenvalue of P .

Property (P acting backwards on measures). The natural space here is the one of finite mea-
sures, i.e. l1 (s) =

{
µ : S→ R :

∥∥µ
∥∥

1 < ∞
}

.
1. Positivity: if µ ≥ 0, then µP ≥ 0.
2. P is a contraction, then ||P||1,1≤ 1

Proof. ∥∥µP
∥∥

1 = ∑
x
|∑

y
µ
(
y
)

Pyx|

≤∑
x

∑
y
|µ
(
y
)
|Pyx (Triangle inequality)

= ∑
y
|µ
(
y
)
|∑

x
Pxy =

∥∥µ
∥∥

1 .
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3. There exists µ such that µP = µ. We saw above that 1 is an eigenvalue when P acts on the
right, so it is also an eigenvalue when P acts on the left.

Lemma. If µP = µ, then |µ|P = |µ|.

Proof. Let |µ|(x) := |µ (x) |. Then,(
|µ|P

)
(x) = ∑

y
|µ
(
y
)
|Pyx ≥ |∑

y
µ
(
y
)

Pyx|= |µ (x) |.

The inequality follows from the triangle inequality. Then
(
|µ|P

)
(x) ≥ |µ|(x) , ∀x. If

there exists an x such that the inequality holds strictly, then
∥∥|µ|P∥∥1 >

∥∥|µ|∥∥1, which is a
contradiction since P is a contraction. Thus, the statement must hold with equality.

Corollary. µP = µ has a nonnegative solution. Therefore, we can always take the absolute vaue
and normalize the solution by its L1 norm, thus what we obtain is a distribution because the
solution has only positive entries and L1 norm equal to 1.

Note. We used that the state space is finite. Indeed, we just consider the space of functions with
finite L1 norm so that we are able to normalize the solution at the end. If we consider a RW on the
integers then there is no stationary distribution because we cannot normalize at the end (the L1

norm is not finite).

4.5 Uniqueness

Proposition. The dimension of the eigenspace is the number of irreducible components of the
transition matrix P, i.e.

dim
{

f : P f = f
}

= number of irreducible components of P

.

Proof. Will first consider the case for irreducible P. Proof for general P is left as an exercise.
1. Suppose P is irreducible. Want to show that the dimension of the eigenspace is 1.

We know that if f is a constant vector

f = c · 1,
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then P f = f . Assume that dim
{

f : P f = f
}
≥ 2. Then there must exist f such that f

is nonconstant and P f = f . Define

A :=

{
x ∈ S : f (x) = max

y∈S
f
(
y
)}

.

Since S is finite, A 6= ∅. f nonconstant implies A 6= S.
Since P is irreducible, there must exist x ∈ A, y ∈ Ac such that Pxy > 0, since P is
irreducible. Now we know that f (x) = maxz∈S f (z) ≡ M, and P f = f , so

f (x) = ∑
x∈S

Pxz f (z) = Pxy f
(
y
)

+ ∑
z∈S,z 6=y

Pxz f (z) ≤ Pxy f
(
y
)

+
(

1− Pxy

)
M < M

which is a contradiction.
2. More generally, ≥ direction is easy. On each irreducible component C, define f =

α1c.

Corollary. The stationary distribution is unique if and only if P is irreducible.

4.6 Convergence of Markov chains

Definition (Coupling). If X and Y are two random variables, then a coupling
(
X′, Y′

)
is a pair

of RVs defined on the same probability space such that X′ =d X and Y′ =d Y.

Note. A few brief comments on coupling.
1. A trivial but useless coupling is taking X′ and Y′ independent with appropriate marginals.
2. Often define coupling with one of two goals in mind.

(a) X′ ≤ Y′ a.s. (stochastic domination)
(b) Minimize P

(
X′ 6= Y′

)
.

Example. Suppose X ∼ Bin
(
n, p

)
and Y ∼ Bin

(
m, p

)
with m > n. We have that for all z ∈ R,

P (X ≥ z) ≤ P (Y ≥ z) .

We can show the above inequality more formally using coupling.

Proof. Let Z1, Z2, . . . , Zm be i.i.d. Be(p) RVs. Let X′ := ∑n
i=1 Zi and Y′ := ∑m

i=1 Zi. Clearly
the marginals are consistent. Since Y′ = X′ + ∑m

i=n+1 Zi ≥ X′,

P (Y ≥ z) = P
(
Y′ ≥ z

)
≥ P

(
X′ ≥ z

)
= P (X ≥ z) .
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Theorem (Markov chain convergence). Let S be a finite state space. Let P be an ergodic tran-
sition matrix (i.e. irreducible and aperiodic). Let π denote the stationary distribution of P. For
every x ∈ S, if X0, X1, . . . is a Markov chain with X0 = x and transition matrix P, then

Xn ⇒ π.

Moreover, ∃ ε > 0, C < ∞ such that for all n,

max
x∈S

∑
y∈S
|P
(
Xn = y | X0 = x

)
− π

(
y
)
|≤ C (1− ε)n .

Proof. Let {Xn}n≥0 be a Markov chain with transition matrix P and X0 = x. Let Yn be a
Markov chain with transition matrix P and Y0 ∼ π for stationary distribution π. Then
marginally,

Yn ∼ π, ∀n.

Let T := min {n ≥ 0 : Xn = Yn} be the first time Xn and Yn meet. Define a third stochastic
process

Zn =

Xn if n ≤ T

Yn if n > T

Since Xn and Yn share the sample transition matrix P and Zn begins at the same initial
condition as Xn, Zn shares the same distribution as Xn. Moreover, from coupling Zn is not
independent of Yn. Then, we want to prove that

|P
(
Xn = y

)
− π

(
y
)
|≤ P (T > n)

To do so, note the following

P
(
Xn = y

)
= P

(
Zn = y

)
(coupling)

= P
(
Zn = y | T > n

)
P (T > n) + P

(
Zn = y | T ≤ n

)
P (T ≤ n)

Recall the definition of Zn: if n > T it means that Xn and Yn have already met, thus
Zn = Yn. Moreover, the event

{
Zn = y, T ≤ n

}
is equivalent to the event

{
Yn = y, T ≤ n

}
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This implies that

P
(
Zn = y, T ≤ n

)
= P

(
Yn = y, T ≤ n

)
= P

(
Yn = y

)
−P

(
Yn = y, T > n

)
= π

(
y
)
−P

(
Yn = y, T > n

)
= π

(
y
)
−P

(
Yn = y | T > n

)
P (T > n)

and similarly
P
(
Zn = y, T > n

)
= P

(
Zn = y | T > n

)
P (T > n)

Therefore, putting everything together

P
(
Xn = y

)
= π

(
y
)

+ P (T > n)
(

P
(
Zn = y | T > n

)
− P

(
Yn = y | T > n

))
which, because the term in brackets is between 1 and -1, implies

|P
(
Xn = y

)
− π

(
y
)
|≤ P (T > n)

The above inequality gives a bound on the tail probability that we want to squeeze to
0. Since P is ergodic, there exists M ≥ 1 such that

(
PM
)

x,y
> 0 for all x, y ∈ S. For

simplicity, assume that M = 1. Let δ := minx′ ,y′ Px′ ,y′ > 0 give the smallest positive entry
in the transition matrix. Want to check each time step to see whether or not the two chains
have met

P
(
T > n + 1 | T > n

)
≤ max

x′ 6=y′
P
(
Xn+1 6= Yn+1 | Xn = x′, Yn = y′

)
(Markov+haven’t met)

= 1−min
x′ 6=y′

P
(
Xn+1 = Yn+1 | Xn = x′, Yn = y′

)
(Complement)

≤ 1−min
x′ 6=y′

P
(
Xn+1 = Yn+1 = x′ | Xn = x′, Yn = y′

)
(Smaller set)

= 1−min
x′ 6=y′

Px′x′Py′x′ (independence of Yn and Xn + Markov)

≤ 1− δ2.

This implies that P (T > n) ≤
(

1− δ2
)n n→∞−−−→ 0. Explicitly,

P (T > n) = P
(
T > n | T > n− 1

)
P (T > n− 1)

≤
(

1− δ2
)

P (T > n− 1)

...

≤
(

1− δ2
)n n→∞→ 0
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Finally

max
x∈S

∑
y∈S
|P
(
Xn = y | X0 = x

)
− π

(
y
)
|≤ |S|

(
1− δ2

)n

Note. Above indicates exponential decay to the stationary distribution, which could be fast. How-
ever, ε may depend on |S|, so could actually be slow for big |S| i.e. e−|S|.

Note that for uniqueness of the stationary distribution π we just need the transition matrix to be
irreducible, still we need aperiodicity.

Now we consider the same theorem but removing aperiodicity.

Theorem. Let S be a finite state space, P irreducible, with stationary distribution π. {Xn}n≥1 is
a Markov chain on S with transition matrix P. Let k be the period of the Markov chain. Then

1
k
{
L (Xn) + L (Xn+1) + . . . + L (Xn+k−1)

}
⇒ π.

Note. Note that the stationary distribution in this case is a mixture of distributions. The number
of distributions used to do this is given by the period of the MC.

The next result is the equivalent of the SLLN for Markov Chains.

Theorem (Ergodic theorem for Markov chains). Suppose S is a finite state space, P is irre-
ducible, and π is a unique stationary distribution. Let f : S → R and define the quantity

m := ∑x∈S f (x)π (x) = Eπ

[
f
]
. Let

{
Xj

}n−1

j=0
be a Markov chain with transition matrix P.

Then,
1
n

n−1

∑
i=0

f (Xi)
a.s.−−−→

n→∞
m.

In words, the time average converges to the space average.

Proof (Sketch). Any function f : S → R can be written as f (x) = ∑y∈S f
(
y
)
1x=y. Hence,

by linearity, it suffices to prove this for indicator functions f (x) := 1X=X0 . Fix x0 ∈ S.
Want to show

1
n

n−1

∑
i=0

1Xi=x0

a.s.−−−→
n→∞

π (x0) .

The term on the left hand side is the fraction of time spent in state x0 during periods
{0, 1, . . . , n− 1}. Central idea is to break the trajectories of the Markov chains according
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to excursions from x0 to x0. Define the following random times

T0 := min {s : Xs = x0} ,

Tj+1 := min
{

s > Tj : Xs = x0

}
,

τj := Tj − Tj−1, j ≥ 1.

In words, Tj gives the time index of the jth time Xs hits x0. τj gives the length of excursion

j, which is also known as return times to x0. From the Markov property,
{

τj

}
j≥1

are i.i.d.

Let

Nt :=
t−1

∑
s=0

1{Xs=X0}.

Key observation is that the events
{

limt→∞ Nt/t = A
}

=
{

limk→∞ Tk/k = 1/A
}

are the
same. If Tk ≤ t < Tk+1 (in the middle of an excursion), then Nt = k + 1. If Tk ≈ k

A ≈ t =⇒
k ≈ tA =⇒ Nt ≈ tA. Note that

Tk = T0 + (T1 − T0) + (T2 + T1) + · · · + (Tk − Tk−1) = T0 + τ1 + τ2 + · · · + τk

where T0 in principle can be infinite but this happens wp 0, thus it is bounded almost
surely. In particular, it can be stochastically dominated by a geometric random variable,
hence it admits finite expectation. Dividing by k

Tk

k
=

T0

k
+

1
k

k

∑
j=1

τj
a.s−→ E [τ1]

by the SLLN, as τ1 admits finite expectation because it is stochastically dominated by a
geometric random variable. Now, define

Tx0 := min {n ≥ 1 : Xn = x0}

then E [τ1] = E
[
Tx0 | Xn = x0

]
. We want to show that E

[
Tx0 | X0 = x0

]
= 1/π (x0). Define

r
(

x | x0
)

= E

Tx0−1

∑
i=0

1Xi=x | Xn = x0


then if I sum over all x ∈ S

∑
x∈S

r
(
x | x0

)
= E

[
Tx0 | Xn = x0

]
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Therefore
r
(
x | x0

)
E
[
Tx0 | Xn = x0

] , x ∈ S

is a probability distribution. More it’s true, it is the stationary distribution. Indeed, note
that r

(
x0 | x0

)
= 1.

4.7 Recurrence and transience

Let S be countably infinite. Many things extend from the finite case (like irreducibility,
periodicity) but many things are different. In particular a stationary distribution does not
always exist (eg. SSRW on Z).

Definition (First hitting time). Let x ∈ S, we say that

Tx := inf {n ≥ 1 : Xn = x} , x ∈ S

is the first hitting time for Xn.

It represents the amount of time (number of steps) until the chain returns to state x given
that it started in state x. Note how “never returning” is allowed in the definition by
defining Tx = ∞ if Xn 6= x, ∀ n ≥ 1.

Definition (Recurrent and transient states). We say that x ∈ S is a recurrent state if

px := P
(
Tx < ∞ | X0 = x

)
= 1.

We say that x ∈ S is transient if

px := Px
(
Tx < ∞ | X0 = x

)
< 1.

Note. By the Markov property, once the chain revisits state x, the future is independent of the past,
and it is as if the chain is starting all over again in state x for the first time: Each time state x is
visited, it will be revisited with the same probability px independent of the past. In particular, if
px = 1, then the chain will return to state x over and over again, an infinite number of times. That
is why the word recurrent is used. If state x is transient

(
px < 1

)
, then it will only be visited a

finite (random) number of times, after which only the remaining states y 6= x can be visited by the
chain.

Definition (Recurrent). If x ∈ S is recurrent, we say that:

4 STOCHASTIC PROCESSES



4.7 Recurrence and transience 70

• x ∈ S is positive recurrent if Ex [Tx] < ∞
• x ∈ S is null recurrent if Ex [Tx] = ∞.

Definition (Number of returns). The number of times a MC returns to state x ∈ S is given by

Nx =
∞

∑
n=1

1
(
Xn = x | X0 = x

)
Proposition. A Markov chain is recurrent if and only if

E [Nx] =
∞

∑
n=1

P
(
Xn = x | X0 = x

)
= ∞, ∀ x ∈ S

A state is transient if and only if

E [Nx] =
∞

∑
n=1

P
(
Xn = x | X0 = x

)
< ∞,

Proof. If x ∈ S is recurrent, then we return with probability one, thus N = ∞. If x ∈ S is
transient, then N ∼ Geo

(
1− px

)
=⇒ E [Nx] < ∞.

Note. Note that if x ∈ S is transient px < 1, that is we have a probability smaller than 1 to come
back to x. This leads to the interpretation of N as drawing from a Geometric distribution in which
the “success” is defined as not coming back anymore to x. If we count the first visit as X0 = x,
then P (N = n) = 1 · pn−1

x
(
1− px

)
, the CDF of a Geo

(
1− px

)
.

Theorem (Polya’s recurrence theorem). Let {Xn}n≥0 be a simple symmetric random walk on
Zd. Then {Xn}n≥0 is recurrent for d = 1, 2 and transient for d ≥ 3. “Drunk man will always
return home while a drunk bird may not.”

Proof. Use the previous claim. Start at the origin X0 = 0. Let N be the number of returns
to the origin. Consider the d = 1 case. We want to know if E [N] is finite or not. First, note
that E [N] = E

[
∑∞

n=0 1 (Xn = 0)
]

= ∑∞
n=0 P (Xn = 0) = ∑∞

n=0 P (X2n = 0) as the process can
go back to the origin only in even times since the period of the process is 2.
Let Wn be the number of jumps to the right. Then the number of jumps to the left is
n−Wn. Current position Xn is

Xn = Wn − (n−Wn) = 2Wn − n.
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Notice that Xn = 0 ⇐⇒ 2Wn = n ⇐⇒ Wn = n/2. Thus, X2n = 0 ⇐⇒ W2n = n. Note
that Wn ∼ Bin

(
n, 1/2

)
(think of it as the sum of all jumps - aka Bernoulli - to the right).

Therefore

P (X2n = 0) = P (W2n = n) =

(
2n
n

)(
1
2

)n (1
2

)n

=
(2n) !
n! n!

2−2n =
(
1 + o (1)

) 1√
πn

The last equality follows from Stirling’s approximation of n!≈
(
1 + o (1)

)√
2πn

(
n
e

)n
.

Then,

E [N] =
∞

∑
n=1

P (X2n = 0) =
∞

∑
n=1

P (W2n = n) ≥
∞

∑
n=1

c√
n

= ∞.

Thus the SSRW on the integer line is recurrent.

If d = 2, then P (X2n = 0) ≥ c/n (imagine it as being back to the origin means that you
have to be back in both dimensions). If d ≥ 3, P (Xn = 0) ≤ c

nd/2 + de−cn. The details are
left as an exercise.

4.8 Other Results

Proposition. For any communicating class C, all states in C are either recurrent or all states in C
are transient. Thus, if i and j communicate and i is recurrent, then so is j. Equivalently if i and j
communicate and i is transient, then so is j. In particular, for an irreducible Markov chain, either
all states are recurrent or all states are transient.

Proposition. All states in a communicating class C are all together either positive recurrent, null
recurrent or transient

Proposition. An irreducible Markov chain with a finite state space S is always recurrent.

Note. Clearly if the state space is finite for a given Markov chain, then not all the states can be
transient. For, otherwise after a finite number of steps (time) the chain would leave every state
never to return; where would it go?

Note (Interpretation of stationary distribution). When π exists, let πj denote the long run
proportion of the time that the chain spends in state j when the chain starts from state i

πj = lim
n→∞

1
n

n

∑
m=1

1
(
Xm = j | X0 = i

)
, ∀ i ∈ S
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Taking expectations on both sides and applying the bounded convergence theorem to swap limits
and integrals we have

πj = lim
n→∞

1
n

n

∑
m=1

P
(
Xm = j | X0 = i

)
, ∀ i ∈ S

or, alternatively,

lim
n→∞

n

∑
m=1

Pm =


π

π
...

 =


π0, π1, . . .
π0, π1, . . .

...


That is, when we average the m-step transition matrices, each row converges to the vector of sta-
tionary probabilities π. The i− th row refers to the initial condition X0 = i, and for each such
fixed row i, the j− th element of the averages converges to πj. A nice way of interpreting π: If you
observe the state of the Markov chain at some random time way out in the future, then πj is the
probability that the state is j.

Property. Let {Xn}n≥0 be an irreducible MC with finite state space. Then a unique stationary
distribution π exists and it is given by

πx =
1

Ex [Tx]
, ∀ x ∈ S

In words, on average the chain visits state x every Ex [Tx] periods, therefore the probability that it
is in that state is Ex [Tx]

−1.

Note. This property is useful to switch back and forth from the stationary distribution to the ex-
pected time to return in a state. Moreover, it shows us that recurrence is sufficient if S is finite,
whereas positive recurrence is necessary is S is not finite to have a stationary distribution (recall
that if a state is null recurrent then Ex [Tx] = ∞
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5 Martingales

The Markov Property– that conditioned on the present, the past and future are independent–
was central to our study of Markov chains. In this section, we will study martingales and
the martingale property. Roughly, in expectation, the process does not change. Want to
begin by introducing the machinery of conditional expectations. Then introduce martin-
gales and study their properties.

5.1 Elementary conditional expectations

To begin, below are a few non-measure theoretic characterizations of conditional expecta-
tions. These will help motivate later technical discussion.

Definition (Conditional expectations). Suppose that X, Y are two discrete RVs on (Ω,F, P).
For simplicity, assume that X, Y take on finitely many values. For every y in the support of Y

P
(
X = x | Y = y

)
=

P
(
X = x, Y = y

)
P
(
Y = y

) .

Then the conditional expectation of X given Y = y is

E
[
X | Y = y

]
= ∑ xP

(
X = x | Y = y

)
= ∑

x
x

P
(
X = x, Y = y

)
P
(
Y = y

) =
E
[

X1Y=y

]
P
(
Y = y

) .

Note that this is a real number that is a function of y. For convenience, write

f
(
y
)

:= E
(
X | Y = y

)
.

Then the conditional expectation of E
(
X | Y

)
can be defined as

E
(
X | Y

)
:= f (Y) .

Note that E
(
X | Y

)
is a RV which is also defined on the same probability space (Ω,F, P). Let

Z := E
(
X | Y

)
. Then we have that Z (ω) = E

(
X | Y = y

)
whenever ω is such that Y (ω) = y.

Property (Conditional expectations). Below are a few basic properties.
1. Linearity: E

(
a1X1 + a2X2 | Y

)
= a1E

(
X1 | Y

)
+ a2E

(
X2 | Y

)
.

Proof. Follows from linearity of expectation operator.
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2. Tower rule (law of total expectation): E
[
E
(
X | Y

)]
= E (X).

Proof.

E
[
E
(
X | Y

)]
= ∑

y
E
(
X | Y = y

)
P
(
Y = y

)
= ∑

y
∑
x

xP
(
X = x | Y = y

)
P
(
Y = y

)
= ∑

y
∑
x

x
P
(
X = x, Y = y

)
P
(
Y = y

) P
(
Y = y

)
= ∑

x
x ∑

y
P
(
X = x, Y = y

)
= ∑

x
xP (X = x) = E (X) .

3. Independence: If X, Y are independent RVs, then

E
(
Y | X

)
= E (Y) .

4. Taking out what is known: For any measurable function g : Supp (Y)→ R,

E
(
Xg (Y) | Y

)
= g

(
y
)

E
(
Y | X

)
.

We want to extend these elementary conditional expectation definitions to the context of
martingales.

Property. Let Y : F → R be an F−measurable random variable and let Gy :=
{

ω ∈ Ω : Y (ω) = y
}

be the partition of the sample space Ω induced by the random variable Y. Call the elements of the
partition Y-atoms. Z := E

(
X | Y

)
is by construction constant for each Gy. Let G := σ (Y) :=

σ
{

Y−1 (B) : B ∈ BR

}
⊆ F be the sigma-algebra generated by Y. Claim that G consists of all

possible unions of Gy’s, hence Z is measurable with respect to G.
Any G ∈ G is of the form G = ∪y∈IGy, so

E (Z1G) = ∑
y∈I

E
[

Z1Gy

]
= ∑

y∈I
E
(
X | Y = y

)
P
(
Y = y

)
= ∑

y∈I
∑
x

xP
(
X = x | Y = y

)
P
(
Y = y

)
= E (X1G)

The above equality hints at a way of defining conditional expectations more generally.
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5.2 General conditional expectations

Before giving the definition of conditional expectation, a quick preamble on sigma-algebras
is needed. A sigma-algebra is the mathematical equivalent of the loose concept of infor-
mation. Indeed, a sigma-algebra F is nothing else than a collection of subsets of Ω and
if we take A ∈ F we know whether it occurred or not. The expectation of a RV Y that is
G−measurable with F ⊆ G, conditioning on F means that we know that a certain A ∈ F
has occurred, thus we want to focus on the probability of X in the region of Ω where A
occurs. Note that the finer the partition induced by F is, the more the information we get,
because the set A of candidate events gets smaller and smaller.

This is even more telling if we think about σ (X). The sigma-algebra generated by X is
nothing else than the sigma-algebra generated using a special collection of sets of Ω: the
partition of Ω induced by the pre-image of X. If I observe X, then I know in which piece
of the partition of Ω the occurred event is. Thus E

[
Y | σ (X)

]
will compute the average

value of Y in that portion of the sample space.

Definition (Conditional expectation (general)). Suppose that X is an integrable RV (E|X|<
∞) on probability space (Ω,F, P). Let G ⊆ F be a σ−algebra. Then the conditional expectation
E
(
X | G

)
is a random variable that is measurable with respect to G such that

∀G ∈ G, E (X1G) = E
[
E
(
X | G

)
1G

]
.

Definition (Absolutely continuous). Let µ, ν be two measures on a measurable space (E, E). ν

is absolutely continuous with respect to µ denoted as ν << µ if ∀A ∈ E, µ (A) = 0 implies
that ν (A) = 0.

Note. There is another theorem that characterizes absolutely continuous measures. It states that
given a sequence of sets {An}n≥1 such that ν (An)→ 0, then µ (An)→ 0 as well. If we imagine
An as being the difference of two sets, then we see the relationship with continuity in the traditional
sense. This is because as the two sets becomes closer and closer under ν, they are such also under
the dominated measure µ.

Theorem. Given two measures ν and µ on the same measurable space (E, E), if there exists a
random variable f : E→ R such that

µ (A) =
∫

A
f (ω) dν (ω) , ∀ A ∈ E

then µ is absolutely continuous with respect to ν, i.e. µ << ν.
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Note. The converse is also true and it is the Radon-Nikodym theorem.

Example (Absolutely continuous). A few brief examples.
1. Standard Gaussian measure on R is absolutely continuous with respect to the Lebesgue

measure. One way to think of it is that if a set has Lebesgue measure zero, then also the
probability that the Gaussian RV takes values in that set is zero. This is easy to see once we
approach the problem from the right angle. Call ν the Lebesgue measure, and µ the Gaussian
probability measure. Then, it is possible to ‘link’ them through a function f (·). Such a
function is simply the density of a Gaussian random variable!

2. Discrete measures with the same support are absolutely continuous respect to each other (like
Geometric and Poisson).

Theorem (Radon-Nikodym). Suppose that µ and ν are two σ-finite measures on (E,E) and that
ν << µ. Then there exists a non-negative E−measurable function g such that ∀ f ∈ E+∫

E
f (x) dν (x) =

∫
E

g (x) f (x) dµ (x) ,

where g is essentially unique. If the above holds for g̃ too, then g = g̃ µ−a.e.

Definition (Radon-Nikodym derivative). The function g defined above is called a Radon-
Nikodym derivative of µ with respect to ν. Often denoted as

g =
dν

dµ
, g (x) =

dν (x)
dµ (x)

write as ν = gµ.

Radon-Nikodym is useful for going between different probability distributions. Implic-
itly, probability distributions are often defined using Radon-Nikodym derivatives.

Definition (Singular). A measure µ is singular with respect to ν if there exists a set D ∈ E

such that µ (D) = 0 and ν
(
E \ D

)
= 0.

Example. A simple example is to compare purely atomic with diffuse measures, like D = Z and µ

be the Gaussian measure and ν the Poisson measure.

Definition. Let (E, E) be a measurable space and µ a measure on it. Let D ∈ E .
• Let ν (A) = µ (A ∩ D) for every A ∈ E . Then ν is a measure on (E, E); and it is called the

trace of µ on D.
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• Let D be the trace of E on D, that is, D := E ∩ D = {A ∩ D : A ∈ E}. Let ν (A) = µ (A)

for every A ∈ D, then ν is a measure on (D,D) and it is called the restriction of µ to D.

Note. The first thing to realize is that the traceD of a sigma-algebra E is a sigma-algebra as well. It
is a specific sigma-algebra though. Indeed, it is projecting down the larger sigma-algebra E defined
on Ω onto the set D ⊂ Ω. If we take the original measure µ on (Ω, E) and we restrict its domain
to (D,D), we get the restriction of µ on D.

Theorem (Existence and uniqueness of conditional expectations). Suppose we have an inte-
grable RV X on probability space (Ω,F, P) and a sigma-algebra G ⊆ F. There exists a G−measurable
RV Z such that for every G ∈ G

E [X1G] = E [Z1G]

Moreover if the condition above is satisfied by some other G−measurable random variable Z̃ on
(Ω,G, P) then P

(
Z = Z̃

)
= 1.

Proof. Consider case when X is non-negative1 and integrable. Let µ denote the restriction
of P to the measurable space (Ω,G) so that ∀g ∈ G, µ (G) = P (G). Define ν as

∀G ∈ G, ν
(

g
)

:=
∫

G
XdP = E [X1G] .

Note that ν is a finite measure since ν
(

g
)

= E (X) < ∞ because of integrability. Then
ν << µ because if we take a set that has measure 0 according to µ then it has measure 0
according to ν by the definition of ν. By the Radon-Nikodym theorem, there exists Z ∈ G+

such that ν = Zµ. Then, by definition,

E [X1G] = ν (G) =
(
Zµ
)
(G) = E [Z1G]

Z is G−measurable and equality holds, so Z is a conditional expectation E
[
X | G

]
. For

general integrable X, use X = X+ − X−. By above, there exists Z+ ≡ E
[
X+ | G

]
and Z− :=

E
[
X− | G

]
and Z := Z+ − Z−.

For uniqueness, assume Z, Z̃ are both conditional expectations. Then, taking the differ-
ence,

E

[(
Z− Z̃

)
1G

]
= 0, ∀G ∈ G

1In this setting the expectation of X always exists (it might be infinite though).
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Let G+ :=
{

Z− Z̃ > 0
}

and G− :=
{

Z− Z̃ < 0
}

. Then

0 = E

[(
Z− Z̃

)
1G+ −E

[(
Z− Z̃

)]
1G−

]
= E

[
|Z− Z̃|

]
Therefore Z = Z̃ almost surely.

Note (Conditional expectations). A few important observations and special cases.
1. Important special case is when the σ−algebra G is the sigma-algebra generated by some RV

Y defined on (Ω,F, P) where G = σ (Y). In this case, we simply write E
(
X | Y

)
instead of

E
(
X | σ (Y)

)
≡ E

(
X | G

)
.

2. If X is G−measurable, then E
(
X | G

)
= X. Follows immediately from the definition. The-

orem implies uniqueness. Note that this is not true in general as G ⊆ F, thus since X is
F−measurable it is not necessarily true that it is also G−measurable.

3. If G = {∅, Ω} is the trivial sigma-algebra, then E
[
X | G

]
is a constant RV which is equal

to E (X). For the empty set case, 1G = 0. For Ω,1G = 1 =⇒ E (X) = E
[
E
(
X | Y

)]
.

Note (Conditional expectations). Below properties are extensions to the elementary characteri-
zation.

1. Linearity: E
[
a1X1 + a2X2 | G

]
= a1E

[
X1 | G

]
+ a2E

[
X2 | G

]
.

2. Tower rule. Suppose G1 ⊆ G2. Then

E
[
E
[
X | G2

]
| G1

]
= E

(
X | G1

)
.

Note that the richer sigma-algebra is always in the inner expectation.
3. Independence: Let G,H ⊆ F be sigma-algebras. They are independent if ∀ A ∈ G, B ∈ H,

we have that P (A ∪ B) = P (A)P (B). If the sigma-algebras G and σ (X) are independent,
then

E
(
X | G

)
= E (X) .

4. If Y is G-measurable, X is integrable, and XY is also integrable, then

E
[
XY | G

]
= YE

[
X | G

]
.
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Proposition (Conditional expectation as orthogonal projection). Suppose that X is square-
integrable, that is X ∈ L2 (Ω,F, P). Note L2 (Ω,F, P) is a Hilbert space with inner product
〈X, Y〉 = E (XY), and hence with norm

‖X‖L2 =
√
〈X, X〉 =

√
E
(
X2
)
.

Let K := L2 (Ω,G, P) denote the subspace of G-measurable square integrable random variables.
Claim that E

[
X | G

]
is the orthogonal projection of X onto K.

Proof. Let Y = E
[
X | G

]
. Want to show that for all Z ∈ K, 〈X−Y, Z−Y〉 = 0.

〈X−Y, Z−Y〉 = E
[
(X−Y) (Z−Y)

]
= E

[
E
(
(X−Y) (Z−Y) | G

)]
= E

[
(Z−Y)E

[
X−Y | G

]]
(Tower property)

= E
[
(Z−Y) (Y−Y)

]
= 0 (Definition of conditional expectation)

The intuition is that the conditional expectation is the G-measurable random variable that
is closest to X.

5.3 Martingales

Definition (Filtration). Given a totally ordered set T, a filtration is a collection of sigma-algebras
{Ft}t∈T such that Fs ⊆ Ft for all s < t.

Think of T as indexing over time and each Ft representing information sets.

Definition. Given a stochastic process {Xn}n≥0 its natural filtration is given by

Fn := σ (X0, X1, . . . , Xn) .

Definition (Adapted). We say that a stochastic process {Xt}t∈T is adapted to filtration {Ft}t∈T
if Xt is Ft-measurable for all t ∈ T.

Note that a stochastic process is always adapted to its natural filtration.

Definition (Martingale). A stochastic process {Xt}t∈T is a Martingale with respect to a filtration
{Ft}t∈T if the following three conditions hold

1. {Xt}t∈T is adapted to {Ft}t∈T .
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2. ∀ t ∈ T, Xt is integrable. That is E
[
|Xt|

]
< ∞.

3. ∀ s, t ∈ T such that s < t,

E
[
Xt | Fs

]
= Xs. (martingale property)

Note. A few points on martingales
• If you show the martingale property for n = 1 the rest follows by induction
• Often Fn is the natural filtration of {Xn}n≥0, that is Fn = σ (X0, . . . , Xn)

• By the tower rule

Xn = E
[
Xn+m | Fn

]
=⇒ E [Xn] = E

[
E
[
Xn+m | Fn

]]
= E [Xn+m]

In particular
E [Xn] = E [X0] , ∀ n ≥ 0

• When you have two sigma-algebras Gn ⊆ Fn and a stochastic process Yn that is a martingale
with respect to Fn, then by the tower property it is a martingale with respect to Gn as well.
We still need to check that Yn is adapted to Gn as well. Recall indeed that measurability is
preserved from the coarser partition to the finer, but not the viceversa!!

Example (Martingales). Consider a few simple examples.
1. Sum of independent mean zero summands. Let {Xi}i≥0 be i.n.i.d. with mean zero. Let

Sn := ∑n
i=1 Xi, S0 = 0. Note that we have two natural and equivalent natural filtrations

Fn := σ (S0, . . . , Sn) = σ (X0, X1, . . . , Xn). Sn is Fn-measurable, thus we have adaptivity
(this is always the case when we consider the natural filtration). Regarding integrability

E
[
|Sn|

]
≤

n

∑
i=1

E
[
|Xi|

]
< ∞

We need to verify the martingale property now. Note that

E
(
Sn+1 | Fn

)
= E

(
Sn + Xn+1 | Fn

)
= Sn + E

(
Xn+1 | Fn

)
= Sn + E (Xn+1) = Sn,

Hence we conclude that Sn is a martingale with respect to the natural filtration.
2. Product of independent positive mean zero random variables. Let {Xn}n≥0 be mu-

tually independent positive random variables with mean 1. Let Zn := ∏i Xi, Z0 = 1, and
consider the natural filtration Fn := σ (Z0, Z1, . . . , Zn) = σ (X1, . . . , Xn). Adaptivity is
clear since we are considering the natural filtration, whereas integrability

E
[
|Zn|

]
= E [Zn] = E

[
n

∏
i=1

Xi

]
=

n

∏
i=1

E [Xi] = 1 < ∞
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Then

E
(
Zn+1 | Fn

)
= ZnE

(
Xn+1 | Fn

)
= ZnE (Xn+1) = Zn.

The first equality follows because Zn is Fn measurable. The second equality follows from
independence.

3. Symmetric Random walk. Let {X1, X2, . . .} be iid and symmetric, that is P (Xn = 1) =
P (Xn = −1) = 1/2 and define the random walk as Sn := ∑n

i=1 Xi, S0 = 0. It is a martingale
from example 1. Consider now the process defined as Yn := S2

n − n. Yn is a martingale with
respect to its natural filtration defined as usual as Gn := σ (Y0, Y1, . . . , Yn) and with respect
to {Fn}n≥0, where Fn := σ (S0, S1, . . . , Sn). Note that Gn ⊆ Fn. The intuition is that we
lose information when squaring Sn, this is why Gn is coarser than Fn.

Consider now the proof that Yn is a martingale with respect to Fn. Adaptivity follows from
the fact that Gn ⊆ Fn, and integrability from the fact that each Sn is bounded in probability.
Regarding the martingale property

E
[
Yn+1 | Fn

]
= E

[
(Sn + Xn+1)

2 − (n + 1) | Fn

]
= E

[
S2

n + 2SnXn+1 + X2
n+1 − (n + 1) | Fn

]
= E

[
S2

n − n | Fn

]
+ 2E

[
SnXn+1 | Fn

]
+ E

[
X2

n+1 − 1 | Fn

]
= Yn + 2SnE

[
Xn+1 | Fn

]
+ 0 = Yn + 2SnE [Xn+1] + 0 = Yn

The final line follows from Xn+1 being independent of Fn. Next, want to show Yn is a
martingale with respect to Gn. Apply the Tower rule

E
[
Yn+1 | Gn

]
= E

[
E
[
Yn+1 | Fn

]
| Gn

]
= E

[
Yn | Gn

]
= Yn.

The last equality follows because Yn if Gn measurable.
4. Betting: Start with M0 dollars. At time n, can bet Bn dollars based on what happened

previously. You get Bn ·Wn, where {Wi}i≥1 are iid mean zero random variables. Assume
that at time n− 1 you decide the bet at Bn, this makes Bn being Fn−1 measurable. Such a
process is called a predictable process. Now define

Mn = Mn−1 + BnWn, E (W1) = 0.

Then {Mn}n≥0 is a martingale.

E
[
Mn | Fn−1

]
= E

[
Mn−1 + BnWn | Fn−1

]
= Mn−1 + BnE [Wn] = Mn−1.
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Definition (Supermartingale). A supermartingale satisfies the same conditions as a martingale
except in (iii) we have that

E
(
Xn+m | Fn

)
≤ Xn, ∀m.

As an example, we would not expect wealth to increase at a casino.

Definition (Submartingale). A submartingale satisfies the same conditions as a martingale
except in (iii) we have that

E
(
Xn+m | Fn

)
≥ Xn, ∀m.

As an example, if we were the casino, we would expect wealth to increase.

5.4 Stopping times

Let’s start with a motivating example. It sometimes is a useful exercise to separate the
random from the non-random pieces of the puzzle. Let’s build up a stopping time,
starting without randomness, along the lines of your intuition. Suppose that the obser-
vations Xj take values in the space S, and let SN be the space of S-valued sequences.
For any strategy or stopping policy, and any 0 ≤ n < ∞ we may define a two-valued
map φn : SN → {GO, STOP} which tells me what to do at time n if I were to observe
s = (s0, s1, . . .) . We require that φn (s) only depends on the first part of the sequence
(s0, s1, . . . , sn). That is, the decision to stop at time n must only depend on the observa-
tions up to time n. No peeking into the future! Now define

φ (s) := inf
(
n ≥ 0 : φn (s) = STOP

)
This gives a map φ : SN → N ∪ {∞} which expresses our policy, by telling us when to
stop. Finally we can put probability back into the picture by defining τ : Ω → N ∪ {∞}
by

τ (ω) = φ
(
X0 (ω) , X1 (ω) , X2 (ω) , . . .

)
This random variable is the stopping strategy applied to the random sequence(

X0 (ω) , X1 (ω) , X2 (ω) , . . .
)

Definition (Stopping time). let (Ω,F, P) be a probability space and {Fn}n≥0 be a filtration. A
stopping time

T : Ω→N+ ∪ {∞}

is an F−measurable random variable where ∀ n ∈N,
{

ω ∈ Ω : T (ω) ≤ n
}
∈ Fn.
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Note. Note that T is a random time. The intuition behind the definition is that T is a stopping
time if at any given fixed time n, we can determine whether it has occurred or not, that is whether
that event can be in the information set we have. The key is that we cannot use future information
to determine it!

There is an alternative definition

Definition (Stopping time). T is an equivalent stopping time if

∀ n ∈N,
{

ω ∈ Ω : T (ω) = n
}
∈ Fn.

Example. Below are a few simple examples.
1. First hitting time: Let {Xn}n≥0 be a stochastic process with {Fn}n≥0 as its natural filtra-

tion. S is the state space. A ⊆ S. Then

Ta := inf {m ≥ 0 : Xm ∈ A}

is a first hitting time of A. Recall that if an event never happens, we have the infimum of an
empty set which is ∞.

2. Return times: Return times are a special case of a first hitting time

R := inf {m > 0 : Xm = X0} .

Below are a few instructive non-examples.
1. Last hitting times: Let sup {m : Xm ∈ A} give a last hitting time. This is not a stopping

time because we would need to observe whether the event has occurred in the future, i.e. it
would require seeing ahead. Technically sup {m : Xm ∈ A} is not Fn−measurable.

2. Selling before the market drops: Can formally describe the process as

inf {m : Ym+1 −Ym < 0} .

3. Constant time before hitting time: Can formally describe the process as

inf {m : Ym ∈ A} − 5.

Would need to see 5 steps ahead. Think gambling and bankruptcy and a gambler that would
like to stop 5 periods before the ruin.
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Proposition. If T1 and T2 are stopping times, then

min {T1, T2} ≡ T1 ∧ T2

max {T1, T2} ≡ T1 ∨ T2

are stopping times as well.

Definition (Stopped martingale). (Ω,F, P) is a probability space. Let {Fn}n≥0 be a filtration.
Let {Xn} be a martingale/submartingale/supermartingale. We define a stopped process as

XT
n := XT∧n

Theorem. If {Xn}n≥0 is a martingale/submartingale/supermartingale, then
{

XT
n

}
n≥0

is also a

martingale/submartingale/supermartingale.

Proof. Proceed with the martingale case. Proofs for submartingale and supermartingale
are nearly identical. Show the three conditions.

1. Adapted: We can decompose the stopped process as XT
n = ∑n−1

k=0 1T=kXk + 1T≥nXn.
This is because the first n terms take care of the possibility that the stopping time
has already occurred and the process has stopped. The last term considers the pos-
sibility the process has not stopped yet. Then, the first term is Fk measurable be-
cause all indicators in the sum are Fk measurable and Xk is adapted by assumption.
Therefore the first term is Fn−1−measurable. Regarding the second term, the indi-
cator function can be rewritten as 1− 1T≤n−1 so it is Fn−1 measurable, whilst Xn is
Fn−measurable. Therefore all terms are Fn− measurable, which shows that XT

n is
adapted.

2. Integrability: |XT
n |≤ ∑n

k=0|Xk|. Sum of finitely many integrable RVs is also inte-
grable.

3. Martingale property: The equality in the third line can be changed to weak inequal-
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ities for the submartingale and supermartingale cases.

E
[

XT
n | Fn−1

]
= E

[
n−1

∑
k=0

1T=kXk + 1T≥nXn | Fn−1

]

=
n−1

∑
k=0

1T=kXk + 1T≥nE
[
Xn | Fn−1

]
=

n−1

∑
k=0

1T=kXk + 1T≥nXn−1 (Martingale property)

=
n−2

∑
k=0

1T=kXk + 1T≥n−1Xn−1 (grouping terms)

= XT
n−1

Corollary. If {Xn}n≥0 is a martingale and T is a stopping time, then then
{

XT
n

}
n≥0

is also a

martingale, hence

E [XT∧n] = E [XT∧0] = E [X0] .

Thus also limn→∞ E [XT∧n] = E [X0].

Note (Switching order of limit and expectation). Suppose P (T < ∞) = 1. Then limn→∞ XT
n =

XT a.s.. Not always true that E (XT) = E (X0). Consider Xn being a SSRW on Z with first hit-
ting time

T := inf {n ≥ 0, Xn = 1} .

SSRW on Z is recurrent, so indeed P (T < ∞) = 1, that is T < ∞ a.s. However note that
E (X0) = 0, simply because the initial condition is given, and XT = 1 a.s., thus E (XT) = 1.
A few observations are needed. The following holds for any martingale

E [X0] = E [XT∧n] = lim
n→∞

E [XT∧n]

whereas
E [XT] = E

[
lim
n→∞

XT∧n

]
does not hold in general. What went wrong? To apply the corollary, need to be able to exchange
the order of the limit and expectation. For example we need the dominated convergence theorem to
hold.
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The following theorem states when the following chain of equalities holds

E [X0] = E [XT∧n] = lim
n→∞

E [XT∧n] = E [XT]

The first and second equalities are true in general for Martingales. Indeed, the first one
follows from the fact that the stopped process is a Martingale and T ∧ 0 = 0, whilst the
second one follows from the fact that the first equality is true ∀ n ∈ N. The third equality
is the tricky one, because we need to be able to swap limits and integrals!

Theorem (Doob’s Optional stopping theorem). Let (Ω,F, P) be a probability space, {Fn}n≥0

be a filtration, and {Xn}n≥0 a martingale with respect to the filtration {Fn}n≥0. Define T as the
stopping time and let T < ∞ a.s. If any of the following conditions hold, then

E (XT) = E (X0) .

The conditions are
1. Bounded stopping time - ∃N < ∞ such that T ≤ N almost surely.
2. Bounded until stopping time - ∃K < ∞ such that P

(
|XT∧n|≤ K

)
= 1, ∀n ≥ 0

3. Bounded increments and finite expected stopping time - E (T) < ∞ and ∃K < ∞
such that

P
(
|XT∧(n+1) − XT∧(n)|≤ K

)
= 1, ∀ n ≥ 0

Proof. Will show that in each case, we can apply the dominated convergence theorem to
conclude that

lim
n→∞

E [XT∧n] = E

[
lim
n→∞

XT∧n

]
.

Continue case-by-case.
1. E [XT] = E [XT∧N ] = E [X0]. The first equality follows from T ≤ N almost surely.

The last equality follows from the fact that the stopped martingale is a martingale.
2. |XT∧n|≤ K almost surely so K is an integrable dominating function.
3. Decompose the process into the sum of its increments

XT∧n = X0 +
T∧n

∑
k=1

(
XT∧(k) − XT∧(k−1)

)
,

so from the triangle inequality,

|XT∧n|≤ |X0|+
T∧n

∑
k=1
|Xk − Xk−1|≤ |X0|+K (T ∧ n) ≤ |X0|+KT.
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Therefore the dominating integrable function is |X0|+KT. It is integrable because we
know that E

[
|X0|

]
< ∞ and we assumed E

[
|T|
]
< ∞.

5.5 Applications

Example (Gambler’s ruin). Suppose a gambler enters a casino with b dollars. Say losing b dollars
is −b and goal winning amount is a. Model as a simple random walk

Xn+1 = Xn + ξn+1

where {ξi}i≥1 are i.i.d. Rademacher random variables. From early, showed that {Xn}n≥1 is a
martingale. Let

Tx := inf {n ≥ 0 : Xn = x}

be the first hitting time of x. Then T−b is the first time going bankrupt and Ta is the goal. What
is the probability of hitting b before a? Note that T := Ta ∧ Tb is a stopping time.

Proof. We check the conditions of the optional stopping theorem for {Xn}n≥0 and T. The
first condition does not hold (you cannot always stay between, say, 0 and 1). The second
condition does hold because the stopped process lives in max {a, b}. (It also follows from
Polya’s recurrence theorem). We can also check the third requirement using coupling.
Divide time t into intervals of size (a + b). Note that no matter where you are in the
interval [−a, b], the probability that you stop in the next a + b steps is bounded from below
by 2−(a+b). Define Z as the index of the first block where all jumps are to the right. Note
that Z ∼ Geo

(
2−(a+b)

)
. Then T � (a + b) Z (stochastic domination), because Z always

implies T, indeed it is always true that T ≤ (a + b) Z. Implies

E (T) ≤ (a + b)E (Z) = (a + b) 2a+b < ∞.

By the optional stopping theorem, E [XT] = E [X0] = 0. On the other hand, we know that
XT ∈ {−b, a} so

E (XT) = −bP (XT = −b) + aP (XT = a) = −bP (XT = −b) + a
(
1−P (XT = −b)

)
.

Putting the two equalities together, P (XT = −b) = a
a+b .

What is the expected stopping time E (T)? Recall
{

X2
n − n

}
n≥0

is a martingale. Note that

the first two conditions of the optional stopping theorem do not hold. Indeed, we can
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always oscillate between 0 and 1 and both would be violated. Let’s check condition 3.
From before, E (T) < ∞. Moreover, increments are bounded

|X2
T∧(n+1) − (n + 1)−

(
X2

T∧n − n
)
|= |X2

T∧(n+1) − X2
T∧n − 1|

≤ |XT∧(n+1)|2+|XT∧(n)|2+1 ≤ 2 max {a, b}2 + 1 < ∞.

Then, after applying the optional stopping theorem, we obtain

E
[

X2
T − T

]
= E

[
X2

0 − 0
]

= 0 =⇒ E (T) = E
(

X2
T

)
= a2 b

a + b
+ (−b)2 a

a + b
= ab.

Example (ABRACADABRA problem). How long does it take, in expectation, for a monkey
typing randomly on a typewriter to write “ABRACADABRA”? More precisely, let T be the first
time the monkey spells ABRACADABRA. Want to find E (T). Can create a simple bound using
independent blocks (otherwise we would have to think about a ”rolling window” of 11 blocks which
are not independent). The probability that the monkey writes ABRACADABRA in a given block
is 26−11. Then, let Z ∼ Geo

(
1

26−11

)
. We have that T ≤ 11Z, (it is not an equality because it

can happen that the monkey writes down ABRACADABRA across blocks), so we conclude that
E [T] ≤ E (Z) = 11 · 2611. We can now prove the result using the optimal stopping theorem.
Introduce a casino, At each time n = 1, 2, . . . a new gambler comes in with $1 in their pocket. Each
gambler does the following

1. First they bet on the letter A. If they lose, they are out. If they win, they get 26 dollars. Note
that this is a fair bet.

2. If the gambler is still in, they bet 26 dollars on B. Again, if they lose, then they are out. If
they win, they get 262 dollars. Note that this is still a fair game.

After time t, t dollars have been bet (only money is coming from the gamblers). Then let Xn gives
the wealth increase of the casino until time n. We can think of

Xn = n−
(
money of the people at the casino

)
Since all bets are fair, {Xn}n≥0 is a martingale. However, it is not bounded nor it is bounded
before the stopping time (think about the monkey typing A indefinitely). However, it has bounded
increments and finite expected stopping time. To see this note that the martingale cannot increment
by more than 11 · 2611. Claim that we can use the optional stopping theorem. If we can, then

E (XT) = E (X0) = 0.
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On the other hand,

XT = T −
(

2611 + 264 + 26
)
≈ 3.67 · 1015

because the bettor who gambles on the first A of ABRACADABRA receives 2611 dollars, third A
gets 264 dollars, and final A gets 26 dollars. Therefore,

E [T] = 2611 + 264 + 26.

In short, defining a martingale allows us to exactly compute the expected time without having to
rely on independent blocks.

5.6 Martingale convergence

Example (Polya urns). Suppose an urn initially has one blue ball and one red ball. Draw a ball
uniformly at random, look at its color, put it back together with a ball of the same color. This is a
self-reinforcing process, which is often hidden in more complex processes. How do the number of
balls in each color evolve?

Let Xn give the number of blue balls in the urn when there are n total balls. Start with X1 = 1.
Observe that

E
[
Xn+1 | Xn

]
= Xn/n (Xn + 1) +

(
1− Xn/n

)
Xn =

n + 1
n

Xn.

The first term corresponds to a draw of a blue ball. The second term corresponds to a draw of a red
ball. We immediately see that after normalizing by n + 1, we obtain a martingale. In particular,
define xn = Xn/n

E
[
xn+1 | Fn

]
= E

[
Xn+1/(n + 1) | Fn

]
=

1
n + 1

n + 1
n

Xn = xn.

What is the distribution at large times? Consider a simple four-step example

P
(
Obtaining this specific sequence

)
=

1
2
· 2

3
· 1

4
· 3

5
.

There are however many ways to obtain 4 blue balls after 6 periods, but they turn out to have the
same probability (you basically just swap the numerators of the fractions above)! Indeed, observe
that the denominators form a factorial and the numerators are 1 at some point (from red) and 1, 2, 3
for the blue. Immediately see that the probability of any sequence leading to X6 = 4 is the same.
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Processes with this feature are known as exchangeable, because the probability of a given sequence
is invariant to permutations of the elements in the sequence. In this case,

P (X6 = 4) =

(
4
1

)
1 · 1 · 2 · 3

5!
.

More generally,

P (Xn+2 = 1 + k) =

(
n
k

)
{1 · 2 · . . . · k} {1 · 2 · . . . n− k}

(n + 1) !
=

1
n + 1

.

Wee see that Xn+1 is uniformly distributed on its support {1, 2, . . . , n} and the specific probability
is independent of k. After normalizing, xn is uniformly distributed on

{
1/n, 2/n, . . . , (n− 1) /n

}
and xn

d−→ Uni [0, 1] . More is true. Indeed, {xn}n≥2 converges almost surely to a random vari-
able uniformly distributed on [0, 1]. This phenomenon is very general for martingales.

Theorem (Martingale convergence). Let (Ω,F, P) be a probability space, {Fn}n≥0 be a fil-
tration, F∞ := σ

(
∪k≥0,Fk

)
, F0 ⊆ F1 ⊆ . . . ⊆ F∞ ⊆ F. Suppose {Xn}n≥0 is a mar-

tingale/submartingale/supermartingale with respect to {Fn}n≥0. Assume ∃K < ∞ such that
E
[
|Xn|

]
≤ K for all n ≥ 0 (uniform boundedness in L1). Then there exists a random variable

X∞ which is F∞-measurable such that

Xn
a.s.−→ X∞.

Moreover E
[
|X∞|

]
≤ K.

In the previous case xn, being a fraction, was clearly uniformly bounded and it was also a
nice example in which we were able to compute X∞, which is not necessarily easy to do.

Proof. Assume {Xn}n≥0 is a supermartingale. The following reasoning directly applies
to martingales and submartingales with {−Xn}n≥0. Fix −∞ < a < b < ∞. Want to
understand oscillations of the process over [a, b]. The idea is that if the process crosses the
interval infinitely many times, then it cannot converge.

Define U[a,b]
n as the number of upcrossings of the interval until time n. Formally,

U[a,b]
n = max

{
r : ∃ 0 ≤ s1 < t1 < s2 < t2 < · · · < sr < tr ≤ n, xsj < a and xtj ≥ b, ∀j = 1, . . . , r

}
.

Let’s make a casino. Repeat the following steps
1. Wait until X· ≤ a.
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2. Bet 1 unit of money every time until X· ≥ b.
Formally, define the bets as

B1 := 1B0≤a

Bk := 1Bk−1=1,Xk−1<b + 1Bk=1=0,Xk−1≤a, k > 1

The first term corresponds to the case where a bet was placed in the previous round and
the process is less than b. The second term corresponds to the case where a bet was not
placed in the previous round but the process is less than or equal to a. Note that {Bn}n is
a predictable process since it is Fn−measurable.

Let wealth Y0 := 0 and Yn := ∑n
k=1 Bk (Xk − Xk−1). In words, the wealth at time n is the

sum of the wealth changes. Claim that {Yn}n≥0 is a supermartingale because {Xn}n≥1 is
a supermartingale:

E
[
Yn | Fn−1

]
= E

[
Yn−1 + Bn (Xn − Xn−1) | Fn−1

]
= Yn−1 + BnE

[
Xn − Xn−1 | Fn−1

]
≤ Yn−1.

because E
[
Xn − Xn−1 | Fn−1

]
≤ 0 because Xn is a supermartingale. In particular, E (Yn) ≤

E (Y0) = 0. What are the gains and losses in betting? Gains are at least (b− a) when they
occur. Can only lose at the end, because it means that the process never upcrossed the
interval anymore.

Yn ≥ (b− a)U[a,b]
n − |Xn − a|

E (Yn) ≥ (b− a)E
(

U[a,b]
n

)
−
(
|a|+E

[
|Xn|

])

Using that E (Yn) ≤ E (Y0) = 0 and rearranging terms,

E
(

U[a,b]
n

)
≤
|a|+E

[
|Xn|

]
b− a

≤ |a|+K
b− a

< ∞.

Above is called Doob’s upcrossing inequality. We know that
{

U[a,b]
n

}
n≥0

is nondecreas-
ing

0 ≤ U0 ≤ U1 ≤ . . . ≤ Un ≤ Un+1.

Thus Un ↗ U∞ almost surely, because it is a non-decreasing and non-negative process.
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By the monotone convergence theorem,

E [U∞] = E

[
lim
n→∞

Un

]
= lim

n→∞
E (Un) ≤

|a|+K
b− a

< ∞

but this can only happen if U∞ < ∞ almost surely, or, equivalently, if P (U∞ < ∞) = 1
(otherwise the expectation would blow up).

Upcrossings happen finitely many times. First define the event{
lim inf

n→∞
Xn < lim sup

n→∞
Xn

}
=
{
∃ a, b ∈ Q : U[a,b]

∞ = ∞
}

this is so because because if the limit does not exist it means that the limsup an liminf must
differ. Given any two distinct real numbers it is always possible to find two rationals in the
middle. They define an interval in which the process must oscillate indefinitely because
it must be bounded by its limsup and liminf. Then

P

{lim inf
n→∞

Xn < lim sup
n→∞

Xn

} ≤∑ P
(

U[a,b]
∞ = ∞

)
= 0

Therefore a limit exists almost surely. Finally,

E
[
|X∞|

]
= E

[
lim
n→∞
|Xn|

]
≤ lim sup E

(
|Xn|

)
≤ K.

The second-to-last inequality follows from Fatou’s lemma. Final equality follows from
assumption.

Corollary. If {Xn}n≥0 is a nonnegative supermartingale, then Xn
a.s.−→ X∞.

Proof.

E
[
|Xn|

]
= E [Xn] ≤ E (X0) := K < ∞.

The first equality follows from non-negativity. The inequality follows from being a super-
martingale. Thus the above expression gives bounds.

Corollary. If {Xn}n≥0 is a submartingale such that Xn ≤ K for some finite K, then Xn
a.s.−→ X∞.

Proof. Apply the previous corollary with Yn := K − Xn which is a non-negative super-
martingale.
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Theorem (Doob decomposition). Given an integrable stochastic process {Xn}n≥1 adapted to
the filtration {Fn}n≥0, there exists a decomposition

Xn = Mn + An

where {Mn}n≥0 is a martingale with respect to filtration {Fn}n≥0 and {An}n≥0 is a {Fn}n≥0

predictable process, i.e. it is Fn−1−measurable. Moreover, this decomposition is unique up to the
value of M0.

The uniqueness part comes from the fact that you can add something to M0 and subtract
it from A0. Usually {An}n≥0 is called a drift.

Proof. A0 := 0. An := An−1 + E
[
Xn − Xn−1 | Fn−1

]
. By construction, An is Fn−1-measurable.

Let Mn := Xn − An. Let’s check the martingale condition

E
[
Mn −Mn−1 | Fn−1

]
= E

[
(Xn − Xn−1)− (An − An−1) | Fn−1

]
= E

[
Xn − Xn−1 | Fn−1

]
− (An − An−1) = 0.

The second-to-last equality follows from An, An−1 being Fn−1 measurable. The last equal-
ity follows from the definition of An.

For certain processes, Doob decomposition allows us to subtract the drift component and
deal with martingales.
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6 Poisson processes and Brownian motion

6.1 Poisson processes

Poisson processes model arrival processes. The graph of a Poisson process is the same as
a step function and there is a natural correspondence between the process and when the
arrivals happen. They are continuous time processes.

Definition (Number of arrivals). Define the number of arrivals in the time interval [0, t] as
N (t) and let Tk be the time of the k−th arrival,i.e. Tk := inf

{
t ≥ 0 : N (t) = k

}
.

Definition (Poisson process).
{

N (t)
}

t≥0 is a homogeneous Poisson process with rate λ if the
following conditions hold:

1.
{

N (t)
}

t≥0 is a counting processes, i.e. it is increasing in t, it is integer-valued, and
N (0) = 0.

2.
{

N (t)
}

t≥0 has independent increments. That is, Nt+s − Nt is independent of the natural
filtration Ft.

3.
{

N (t)
}

t≥0 has stationary increments:

Nt+s − Nt =d Ns.

4.
{

N (t)
}

t≥0 has no simultaneous arrivals that is

P
(

N (t + h)− N (t) = 1
)

= λh + o (h)

and
P
(

N (t + h)− N (t) ≥ 2
)

= o (h)

almost surely as h→ 0.

Regarding property 4, if I look at a very short time interval, then the probability that there
is an arrival is proportional to the length of the interval and the probability that there are
two or more arrivals is negligibile.

Property (Properties of Poisson process). What are some characteristics of this process?
1. Distribution of arrival times: Consider interval [0, t]. Split into h − length intervals.

Then

Nt ≈ Nbt/hc·h =
bt/hc

∑
i=1

(
Nih − N(i−1)h

)
.
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We can think of such intervals as being independent Bernoulli, hence their sum would be
Binomial. From condition (4), Nt ≈ Bin

(
bt/hc, λh

)
converges in distribution as h→ 0 to

Poi (λt). Therefore N (t) ∼ Poi (λt).
Note that we do not need to assume Poisson distributed arrivals. Suffices to assume proper-
ties 1-4, which is a set of weaker assumptions.

2. Distribution of inter-arrival times:

{T1 > t} =
{

N (t) = 0
}

=⇒ P (T1 > t) = P
(

N (t) = 0
)

= e−λt =⇒ T1 ∼ Exp (λ) .

Similarly, Ti+1− Ti ∼ Exp (λ) . Defining T0 = 0 for simplicity, then {Ti+1 − Ti}i≥0 are iid
Exp (λ).

3. Recall the memorylessness property of the exponential distribution

P
(
T1 > t + s | T1 > t

)
= P (T1 > s) .

this follows from property 2 on independent increments.
4. Can be shown that

{
N (t)− λt

}
t≥0 is a martingale.

5. Superposition: Suppose Mt ∼ PPP (λ) and Nt ∼ PPP
(
µ
)
. Rt := Mt + Nt ∼ PPP

(
λ + µ

)
.

In words, the union of independent Poisson processes is PPP
(
λ + µ

)
.

6. Thinning: Let Rt ∼ PPP (λ). Mark points as 0 or 1 i.i.d. with probability p. Let Mt be a
collection of points with probability 0 and Nt be a collection of points with a mark. Then

{Mt}t≥0 ∼ PPP
(

λ
(
1− p

))
, {Nt}t geq0 ∼ PPP

(
λp
)

and they are independent.

Lemma. If M1, . . . , Mk are independent Poisson processes with rate λi, n1 + . . . + nk = n, λ1 +
. . . + λk = λ, then

P

(
M1 = n1, . . . , Mk = nk |

k

∑
i=1

Mi = n

)
=

n!
∏i ni!

·
k

∏
i=1

(λi

λ

)n1

= P

multinomial

(
n,
{

λi

λ

}k

i=1

)
= {ni}k

i=1

 .

In words, if we partition an interval (0, t) into subintervals and we know the number of arrivals
N on the interval, then the arrivals for the subintervals have multinomial distribution.
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In particular,

P
(

Nt = k | Nt+s
)

= P
(

Nt = k, Nt−s − Nt = l − k | Nt+s = l
)

=

(
l
k

) ( t
t + s

)k( s
t + s

)l−k.

Conditional on Nt+s = l, we have that Nt ∼ Bin
(

l, t
t+s

)
.

Lemma. If Z ∼ Poi (λ) and given Z, X ∼ Bin
(
Z, p

)
and Y := Z − X, then X ∼ Poi

(
λp
)
,

Y ∼ Poi
(

λ
(
1− p

))
, and X, Y independent.

Proof. Let
{

N (t)
}

t≥0 be a Poisson process with rate λ. Z′ := N1, X′ := Np, Y′ := N1 − Np.
Z′ ∼ Poi (λ). By above calculation, conditionally, given Z′, we have X′ ∼ Bin

(
Z′, p

)
. By

construction, Y = Z′ − X′.
Then we have that (X, Y, Z) =d (X′, Y′, Z′

)
. We know that X′ ∼ Poi

(
λp
)

, Y′ ∼ Poi
(

λ
(
1− p

))
and X′/Y′ are independent since the intervals

(
0, p
)

and
(

p, 1
)

do not overlap.
Same statement holds for X and Y.

Example (Applications of superposition and thinning). A few simple examples. Proofs are
left as an exercise.

1. X ∼ Exp
(
µ
)

, Y ∼ Exp (λ). Claim that the minimum X ∧ Y ∼ Exp
(
µ + λ

)
and

P (X ≤ Y) = µ
µ+λ .

2. Waiting for a bus. Passengers PPP (λ) and buses PPP
(
µ
)
. Then the number of passengers

getting on the bus is Geo
(

µ
µ+λ

)
.

6.2 Continuous time Markov chains

Definition (Continuous time Markov chains). Let S be a state space. {Xn}n≥0 is a discrete
time Markov chain on S with transition matrix P. Take {Nt}t≥0 ∼ PPP (λ) independent of
{Xn}n≥0. Let Yt := XN(t) move at the times of jumps in the Poisson process.
Define transition matrix P (t) as

P
(
Yt = b | Y0 = a

)
=

∞

∑
k=0

P
(

N (t) = k, Xk = b | X0 = a
)

=
∞

∑
k=0

P
(

N (t) = k
)

P
(
Xk = b | X0 = a

)
=

∞

∑
k=0

(λt)k

k!
e−λt

(
Pk
)

ab

=⇒ P (t) = eλt(P−I)
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where the above expression is defined through its power series. Let Q := λ (P− I) be the transi-
tion rate matrix. Row sums are one. qα := ∑b:b 6=a qab.
Moreover, note that qaa = −qa and πP (t) = π ⇐⇒ πQ = 0.

Note. There are three possibilities for defining CTMC.
1. As above.
2. Every directed edge has a Poisson clock with parameter qab.
3. every state (vertex) has a Poisson clock with parameter qa; when jump, jump accorting to P.

Definition (Random counting measure). PPP (λ) is a random counting measure on R+. N (A) ∼
Poi

(
λ|A|

)
. If A1, A2, . . . , Ak are disjoint, then N (A1) , N (A2) , . . . , N (Ak) are mutually in-

dependent.
This concept generalizes. Take any measure µ on R+ (above µ = λLeb). PPP

(
µ
)

Poisson process
on R+ with intensity measurr µ. A random counting measure N (·) satisfies

1. N (A) ∼ Poi
(
µ (A)

)
2. If A1, .A2, . . . , Ak disjoint, then N (A1) , N

(
A2, . . . , N (Ak)

)
are independent.

Example. Suppose µ has a density
{

λ (t)
}

t≥0 with respect to the Lebesgue measure. Known as a
nonhomogenous Poisson process (think arrivals to a store).
Can also take µ on any nice space like Rd. Think a spatial Poisson process.

6.3 Brownian motion

Definition (Brownian motion). A real-valued stochastic process
{

B (t)
}

t geq0 is called a (one-
dimensional) Brownian motion starting at x ∈ R if

1. B (0) = x;
2. The process has independent increments. That is for all 0 ≤ t1 ≤ . . . ≤ tn

B (t2)− B (t1) , . . . , B (tn)− B (tn−1)

are independent random variables.
3. Process has stationary increments that are Gaussian with mean 0 and variance equal to the

increment length.

∀t ≥ 0, ∀h > 0, B (t + h)− B (t) ∼ N (0, h)

4. Function t 7→ B (t) is continuous almost surely.
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If x = 0, then the process is called a standard Brownian motion. If
{

B (t)
}

t≥0 is a standard
BM, then

{
B (t) + x

}
is a BM starting at x.

Property (Finite-dimensional distributions of BM). Distribution of all finite dimensional RVs
(B (t1) , . . . , B (tn)) for all 0 ≤ t1 ≤ . . . ≤ tn. Can determined these from properties (i)-(iii) above.
Suppose s < t. Then use independent increments to find the covariance

Cov
(

B (s) , B (t)
)

= E
[
B (s) B (t)

]
= E

[
B (s)

(
B (t)− B (s)

)]
+ E

(
B
(

s2
))

= s.

By definition, B (s) ∼ N (0, s). Putting these together, the joint distribution of s, t is

(
B (s) , B (t)

)
∼ N

(0
0

)
,

(
s s
s t

)
Technique can be extended for additional increments.

Definition (Gaussian process). A stochastic process
{

X (t)
}

t∈T is a Gaussian process if its
finite dimensional distributions are Gaussian.

Theorem (Wiener). Standard BM exists.

Proof. General idea. Paul Levy’s canonical construction uses a countable collection of
i.i.d. standard Gaussians to construct Bm as a uniform limit of continuous functions,
guaranteeing that the limit has continuous paths.
Alternatively, can define a BM has a limit of a random walk.

Theorem (Donsher’s invariance principle, functional CLT). Let X1, X2, . . . , Xn be i.i.d. with
E (X1) = 0 and V (X1) = 1, and Sn ∑n

i=1 Xi. Let

s (t) = sbtc +
(
t− btc

) (
sbt+1c − sbtc

)
give a linear interpolation. Let

S∗n (t) =
S (nt)√

n
, ∀t ∈ [0, 1] .

Note
{

S∗n (t)
}

t∈[0,1] ∈ C [0, 1]. Consider
(
C [0, 1] , ‖·‖∞

)
. Then

S∗n
d−→ B
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where B =
{

B (t)
}

t∈[0,1] is a standard BM on [0, 1]. On the space C [0, 1] of continuous functions
on the unit interval with the metric induced by the sup-norm, the sequence {S∗n}n≥1 converges in
distribution to a standard BM

{
B (t)

}
t∈[0,1].

That is, for every bounded continuous function, f :
(
C [0, 1] , ‖·‖∞

)
→ R, we have that

E
[

f (S∗n)
] n→∞−−−→ E

[
f (B)

]
.

In words, this is a generalization of the central limit theorem. Properly scaled paths look like BM.

Proof. Rough sketch. Convergence of FDD follows from multivariate CLT. Note

Cov
(
S∗n (s) , S∗n (t)

)
=

1
n
(ns ∧ nt) = n ∧ t.

Takes some work to show that the limit is continuous almost surely.

Property (Brownian motion). Let
{

B (t)
}

t≥0 be a standard BM.

1. Symmetry: B̃ (t) = −B (t) , t ≥ 0 =⇒
{

B̃ (t)
}

t≥0
is also a standard BM.

2. Time homogeneity: Fix s > 0. B̃ (t) = B (s + t)− B (s) , t ≥ 0. Then
{

B̃ (t)
}

t≥0
is also a

standard BM.
3. Time reversal: Fix T > 0. B̃ (t) := −B (T) + B (T − t). Then

{
B̃ (t)

}
t∈[0,T]

is a standard

BM.
4. Scale invariance. Fix c > 0. Let

X (t) =
1√
c

B (ct) .

Then
{

X (t)
}

t≥0 is a BM. In words, sample paths of BM are random fractals.
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A Summary of Main Results

Recap 1: Measure Theory

• Sigma-algebra - A collection of sets E is a sigma-algebra on a E if
1. ∅ ∈ E
2. it is closed under complements
3. it is closed under countable union

• Generated sigma-algebra - The sigma-algebra generated by a collection of sets C is
the smallest sigma-algebra containing C and it is denote as σ (C). The sigma-algebra
generated by a RV is

σ (X) =
{

B ⊆ Ω : B = X−1 (A) , A ∈ F
}

• Measurable space - it is a non-empty set and a sigma-algebra (E, E)
• Measure - A set function µ : E → R+ on a measurable space (E, E) is a measure

1. if µ (∅) = 0
2. and it is countably additive

• Measure Space - it is a triplet
(
E, E , µ

)
.

• Probability Space - it is a triplet (Ω,F , P), where P (Ω) = 1.
• Measurable function - A function f from a measurable space (E, E) to another mea-

surable space (F,F ) is measurable if

f−1 (B) ∈ E , ∀ B ∈ F

• Checking on collections C - if a sigma algebra E is generated by a collection of sets C,
then we can use just C to check:

1. if two measures on (E, E) are identical
2. if two probability distributions are identical. If the codomain is endowed with

BRn then we can just use CDFs
3. if a function f is measurable with respect to F and E

• Integration
– a function f : E→ R+ is a positive function
– Every simple function is measurable (sum of indicators)
– A positive function is measurable iff it is the limit of an increasing sequence of

positive simple functions
– if f is simple the integral is µ

(
f
)

= ∑n
i=1 aiµ (Ai)

– if f is measurable and positive the integral is µ
(

f
)

= limn→∞ µ
(
dn ◦ f

)
– if f is measurable the integral is µ

(
f
)

= µ
(

f +)− µ
(

f−
)

A SUMMARY OF MAIN RESULTS
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• the integral exists if at least one of µ
(

f +) and µ
(

f−
)

is finite, thus the integral always
exists on R+ for positive functions

• a function is integrable if µ
(
| f |
)
< ∞

• To interchange limits and integrals take fn measurable ∀ n:
1. Monotone Convergence Theorem for increasing and positive

{
fn
}

n
2. Dominated Convergence Theorem for dominated and positive

{
fn
}

n
3. Bounded Convergence Theorem for bounded and positive

{
fn
}

n

lim
n→∞

µ
(

fn
)

= µ

(
lim

n→∞
fn

)
(under 1,2,3)

4. Fatou’s Lemma for positive
{

fn
}

n

µ

(
lim inf

n→∞
fn

)
≤ lim inf

n→∞
µ
(

fn
)

• To change order of integration
1. Fubini, if f is integrable, i.e. ∫

E×F
| f |d

(
µ× ν

)
< ∞

2. Tonelli, always if the integrand is positive
• Expectations are integral
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Recap 2: Asymptotics and the Law of Large Numbers

• General Markov Inequality - Let X be a positive random variable and f : R→ R+ be
non-decreasing, then

P
(

f (X) ≥ λ
)
≤

E
[

f (X)
]

f (λ)
, ∀ λ > 0

• Chebyshev’s Inequality - Let X be a real-valued RV with E
(

X2
)
< ∞, then

P
(
|X−E (X) |≥ λ

)
≤ V (X)

λ2 , ∀ λ > 0

• Chernoff’s bound - Let X be a random variable, then

P (X ≥ λ) ≤ inf
t≥0

E
[
etX
]

etλ , ∀ λ > 0,

It is Markov with f (X) = etX ∀ t ≥ 0

• Convergence in probability - Xn
p→ X if

∀ε > 0, lim
n→∞

P
(
|Xn −m|≥ ε

)
= lim

n→∞
P
({

ω ∈ Ω : |Xn (ω)−m|≥ ε
})

= 0

• Almost sure convergence - Xn
a.s.→ X if

P

({
ω ∈ Ω : lim

n→∞
Xn (ω) = 0

})
= P

(
lim

n→∞
Xn = 0

)
= 1.

• Borel-Cantelli
I. ∑∞

n=1 P (An) < ∞ =⇒ P
(
lim supn→∞ An

)
= 0

II. {An}n disjoint, then ∑∞
n=1 P (An) = ∞ =⇒ P

(
lim supn→∞ An

)
= 1

• WLLN If {Xn}n are integrable and C
(

Xi , Xj

)
= ρ

(
|i− j|

)
, ρ (x)→ 0, then

Xn
p→ E [Xi]

• SLLN If {Xn}n are integrable and i.i.d., then

Xn
a.s.−→ E [Xi] .

• To prove convergence in probability use bounds
• To prove convergence almost surely rely on Borel-Cantelli lemmas or SLLN
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Recap 3: Central Limit Theorem and Characteristic Functions

• Weak Convergence - Xn weakly converges to X if CDF of Xn converges pointwise to
the CDF of X for all the continuity points of X. To prove it

1. use definition above
2. if E

[
g (Xn)

]
⇒ E

[
g (X)

]
for all continuous and bounded functions g

3. convergence of characteristic functions (Levy’s continuity)
4. tightness (Prohorov’s theorem)

• CLT - If {Xn}n are iid with finite second moments, mean-zero and variance 1, then

Sn −E [Sn]√
V (Sn)

⇒ N (0, 1)

• Characteristic Functions - φX (t) = E
[
eitX
]

1. if X and Y are independent, then φX+Y = φXφY

2. if φX = φY, then X d= Y
3. Moments can be computed from characteristic functions by taking the k−th deriva-

tive and evaluating it at 0

φ(k) (0) = E
[
(iX)k

]
= ikE

[
Xk
]

4. Levy’s Continuity theorem.
– Fn ⇒ F implies that φXn → φX pointwise in t.
– if φXn → φX pointwise in t and φX is continuous at t = 0, then Fn ⇒ F

• Uniform Tightness - Xn is uniformly tight if

∀ ε > 0, ∃M ∈ R++ : P
(
|Xn|≥ M

)
≤ ε, ∀, n ∈N

• Prohorov’s Theorem
1. if Fn ⇒ F then Fn is uniformly tight
2. if Fn is uniformly tight then there exists a subsequence

{
Fnk

}
k that weakly con-

verges
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Recap 4: Markov Chains

• Markov Property - Given a stochastic process {Xn}n≥0 with state space S

P
(
Xn+1 = an+1|Xn = an , Xn−1 = an−1, . . . , X0 = a0

)
= P

(
Xn+1 = an+1|Xn = an

)
• Right multiply the transition matrix to get(

Pn f
)
(x) = E

[
f (Xn) | X0 = x

]
(forward)

• Left multiply the transition matrix with µ
(
y
)

= P
(
X0 = y

)
to get(

µPn) = P (Xn = x) (backward)

• Classification of states/MC
– a state A is closed if P (A→ Ac) = 0
– The closure of A is the smallest closed set containing A
– a state A is irreducible (communicating class) if A = A (minimal closed) and all its parts

are connected ∀ x, y ∈ A, ∃ n0 ∈N : (Pn0 )xy > 0
– elements of communicating classes share the same properties, such as recurrence, tran-

sience, period
– a state is recurrent if it is part of an irreducible component
– a state is transient if it is not recurrent
– the period of a state is the GCD of the length of the walks returning to it
– a state is aperiodic if it has period 1
– a state is ergodic if it is irreducible and aperiodic

• If S is finite then there always exists an irreducible component. If S is not finite this need not be
true.

• Stationary Distribution - π = πP, therefore the stationary distribution is the left eigenvector of
P with eigenvalue 1 with norm normalized to 1

– existence: π exists if the chain is irreducible
– uniqueness: π is unique iff MC is irreducible
– convergence: if MC is ergodic then Xn ⇒ X, if it is irreducible with period k then

1
k

k

∑
j=1
L
(

Xn+j−1

)
⇒ π

• ergodic theorem (SLLN) - if MC is irreducible, then n−1 ∑i f (Xi)
a.s.→ E

[
f (X)

]
• Polya’s recurrence theorem - The SSRW on Zd is recurrent if d ∈ {1, 2} and transient if d ≥ 3
• Let Tx := inf {n ∈N+ : Xn = x} , Nx = ∑∞

n=1 1 (Xn = x)
1. Transient: if P

(
Tx < ∞ | X0 = x

)
< 1 or E [Nx] < ∞

2. Recurrent: if P
(
Tx < ∞ | X0 = x

)
= 1 or E [Nx] = ∞

– Positive Recurrent: if Ex [Tx] < ∞
– Null Recurrent: if Ex [Tx] = ∞
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Recap 5: Martingales

• Conditional Expectation - Let (Ω,F , P) and X be a real-valued RV. The conditional
expectation of X given G ⊆ F is a RV Y such that:

1. Y is G−measurable
2.
∫

G YdP =
∫

G XdP, ∀G ∈ G
• Filtration - Given a totally ordered set T, a filtration is a collection of sigma-algebras
{Ft}t∈T such that Fs ⊆ Ft for all s < t.

• Natural Filtration - Given a stochastic process {Xn}n≥0 its natural filtration is given by

Fn := σ (X0, X1, . . . , Xn) .

• Adapted - {Xt}t∈T is adapted to filtration {Ft}t∈T if Xt is Ft-measurable for all t ∈ T.
• Martingale - {Xt}t∈T is a Martingale with respect to a filtration {Ft}t∈T if

1. {Xt}t∈T is adapted to {Ft}t∈T .
2. ∀ t ∈ T, Xt is integrable. That is E

[
|Xt|

]
< ∞.

3. ∀ s, t ∈ T such that s < t,

E
[
Xt | Fs

]
= Xs. (martingale property)

• Using the definition and LIE we get E [Xt] = E [X0] , ∀ t ∈ T

• Supermartingale - E
(
Xn+m | Fn

)
≤ Xn, ∀m.

• Submartingale - E
(
Xn+m | Fn

)
≥ Xn, ∀m.

• Stopping time - T is a stopping time if ∀ n ∈N,
{

ω ∈ Ω : T (ω) = n
}
∈ Fn.

• Stopped process - If Xn is sub/super/martingale, then XT
n := XT∧n is a stopped process

• If {Xn}n≥0 is a sub/super/martingale, so is
{

XT
n

}
n≥0

hence

∀ n ∈N, E [XT∧n] = E [XT∧0] = E [X0] , lim
n→∞

E [XT∧n] = E [X0]

• Optional stopping theorem - If {Xn}n≥0 is a martingale and T is an a.s. finite stopping
time, then

E [X0] = lim
n→∞

E [XT∧n] = E

[
lim

n→∞
XT∧n

]
= E [XT ]

if at least one the following three conditions is satisfied :
1. bounded stopping time
2. bounded process until stopping time
3. bounded increments and finite expected stopping time
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• Martingale convergence - {Xn}n≥0 is a sub/super/martingale with respect to {Fn}n≥0.
Assume ∃K < ∞ such that E

[
|Xn|

]
≤ K for all n ≥ 0, then

Xn
a.s.−→ X∞.

Moreover E
[
|X∞|

]
≤ K.

• If {Xn}n≥0 is a nonnegative supermartingale, then Xn
a.s.−→ X∞.

• If {Xn}n≥0 is a submartingale such that Xn ≤ K for some finite K, then Xn
a.s.−→ X∞.

• Doob decomposition - Given an integrable stochastic process {Xn}n≥1 adapted to the
filtration {Fn}n≥0, there exists a decomposition

Xn = Mn + An

where {Mn}n≥0 is a martingale with respect to filtration {Fn}n≥0 and {An}n≥0 is a
{Fn}n≥0 predictable process, i.e. it is Fn−1−measurable. Moreover, this decomposi-
tion is unique up to the value of M0.
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B Relevant Mathematical Facts

B.1 Series

The following series (Harmonic series) diverges2

lim
n→∞

∞

∑
n=1

1
n

= ∞

and it is a benchmark to verify convergence of other series. Indeed, if the summands
decay slower than 1/n we now that their sum diverges, whereas if the summands decay
faster their sum will converge. Two examples

lim
n→∞

∞

∑
n=1

1
log n

= ∞, lim
n→∞

∞

∑
n=1

1
nκ

< ∞, κ > 1

If κ = 2, this is known as the Basel problem and

lim
n→∞

∞

∑
n=1

1
n2 =

π

6
< 2

The general setting is the Bertrand series

∑
n≥2

1

nα (ln n)β
< ∞ ⇐⇒ α > 1, or α = 1, β > 1

Note that the Bertrand series does not converge if α = β = 1, indeed

∞∫
2

1
x ln (x)

dx =
[
ln
(
ln (x)

)]∞

2
= ∞

by the integral test.

Definition of ex

ex =
∞

∑
n=0

xn

n!

B.2 Inequalities

1
e
>

1
3

, e < 3

2Most of this results hold even if the series starts at 0.
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Some inequalities with the max operator

max
1≤i≤n

|Xi| ≤
n

∑
i=1
|Xi|

exp
(

max
1≤i≤n

Xi

)
= max

1≤i≤n
exp (Xi) ≤

n

∑
i=1

exp (Xi)

Bernoulli’s inequality
(1− x)n ≥ 1− nx

B.3 Integration by parts

If you don’t recall the formula for integration by parts, just use the definition of derivative
of a product and take the integral of both sides

∂

dx
[

f (x) g (x)
]

= f ′ (x) g (x) + f (x) g′ (x)

f (x) g (x) =
∫

f ′ (x) g (x) dx +
∫

f (x) g′ (x) dx∫
f (x) g′ (x) dx = f (x) g (x)−

∫
f ′ (x) g (x) dx
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B.4 List of limits

lim
x→+∞

(
x

x + k

)x

= e−k

lim
x→0

(1 + x)
1
x = e

lim
x→0

(1 + kx)
m
x = emk

lim
x→+∞

(
1 +

k
x

)mx

= emk, k, m ∈ R

lim
x→0

(
1 + a

(
e−x − 1

))− 1
x

= ea

lim
x→0

xe−x = 0

lim
x→∞

xe−x = 0

lim
x→0

(
ax − 1

x

)
= ln a

lim
x→0

(
ex − 1

x

)
= 1

lim
x→0

(
eax − 1

x

)
= a

B.5 Taylor Expansions (around 0)

ln (1− x) = x− x2

2
− x3

3
− · · · − xn

n
+ O

(
xn+1

)
ln (1 + x) = x− x2

2
+

x3

3
− · · · + (−1)n+1 xn

n
+ O

(
xn+1

)
ex = 1 +

x
1!

+
x2

2!
+ · · · + xn

n!
+ O

(
xn+1

)
1

1 + x
= 1− x + x2 − x3 + x4 · · · + (−1)n xn + O

(
xn+1

)
1

1− x
= 1 + x + x2 + x3 + x4 · · · + (−1)n xn + o (xn)

B.6 Exact Taylor Expansion

f
(
y
)

= f (x) +∇ f (x)′
(
y− x

)
+

1
2
(
y− x

)′∇2 f (z)
(
y− x

)
, z ∈

[
x, y
]
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B.7 List of Distributions

• Bernoulli, X ∼ Be
(

p
)
, p ∈ [0, 1], X = {0, 1}

fX
(
x; p
)

= px (1− p
)1−x , E [X] = p, V [X] = p

(
1− p

)
• Binomial, X ∼ Bi

(
n, p

)
,
(
n, p

)
∈N× [0, 1], X = 0, 1, . . . , n

fX
(

x; n, p
)

=
(

n
x

)
px (1− p

)n−x , E [X] = np, V [X] = np
(
1− p

)
• Geometric, X ∼ Geo

(
p
)
, p ∈ [0, 1], X = 0, 1, . . .

fX
(

x; p
)

=
(
1− p

)x−1 p, E [X] =
1− p

p
, V [X] =

1− p
p2

• Poisson: X ∼ Poi (λ), λ ∈ R++, X = 0, 1, . . .

fX (x; λ) =
λxe−λ

x!
, E [X] = λ, V [X] = λ

• Exponential: X ∼ Exp (λ), λ ∈ R++, X ∈ R+

fX (x; λ) = λe−λx
1[0,∞) (x) , E [X] = 1/λ, V [X] = 1/λ2

• Gaussian: X ∼ N
(

µ, σ2
)

,
(

µ, σ2
)
∈ R×R++, X ∈ R

fX

(
x; µ, σ2

)
=

1√
2πσ

e−
(x−µ)2

2σ , E [X] = µ, V [X] = σ2
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