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1 Concentration Inequalities

Reference: Wainwright (2019), Ch. 2-3.

In this section we study concentration inequalities, which are probability statements about
how random variables fluctuate around their means.

1.1 Bounds for Bounded Random Variables

The goal of this section is to study the concentration phenomenon, that is understand the
behavior of |X − µ|, where X ∼ PX and µ = EX∼PX

[X]. As such we will study tail bounds
of the form

PX(|X − µ| ≥ t) ≤ g(t, n), t > 0.

Proposition 1 (Markov’s Inequality). Let X be a non-negative random variable. Then

∀ t > 0, P(X ≥ t) ≤ E[X]

t
.

Proof. Fix any t > 0. Then X ≥ t · 1{X ≥ t} almost surely. Hence, taking expectations of both sides

E[X] ≥ t · E[1{X ≥ t}] = t · P[X ≥ t],

which was to be shown.

■

Note. Note that even if E[X] is not finite the inequality above trivially holds. ♦

Note. In the following examples we will work with a sequence of iid random variables Zi, i =
1, . . . , n, Zi ∼ PZ ∈ P([0, 1]), where P([0, 1]) is the space of probability distributions with
support over [0, 1]. We use such space because it’s convenient, as random variables with
bounded support have all moments that are bounded. ♦

Example 1 (Bound for the sample mean). Let’s apply Markov’s inequality to X = 1
n

n∑
i=1

Zi.

We consider the non-negative random variable |X − µ| and

P(|X − µ| ≥ t) ≤ E[|X − µ|]
t

≤

√
E[(X − µ)2]

t
,

1 CONCENTRATION INEQUALITIES



1.1 Bounds for Bounded Random Variables 4

where the first inequality is the Markov’s inequality and the second one is Jensen’s inequality.
To make the bound more explicit consider

E[(X − µ)2] = E[(
1

n

n∑
i=1

(Zi − µ))2]

=
1

n2

n∑
i=1

E[(Zi − µ)2] +
1

n2

n∑
i ̸=j

E[(Zi − µ)(Zj − µ)]︸ ︷︷ ︸
=0, independence

≤ 1

n2

n∑
i=1

1 =
1

n
. (Zi are bounded)

Thus the bound becomes

P(|X − µ| ≥ t) ≤ 1√
n · t

. (1.1)

We can now convert the bound in (1.1) into a statement of the form

|X − µ| ≤ κ with probability at least 1− δ,

by simply requiring that 1√
nt

= δ, solving for t, and plugging it back in (1.1). This yields

κ =
1√
nδ

=⇒ |X − µ| ≤ 1√
nδ

with probability at least 1− δ.

Note that this statements holds for any n, thus it is a finite sample statement. ♣ Next
bound typically requires some extra assumptions, but is tighter.

Proposition 2 (Chebyshev’s Inequality). Let X be a random variable with finite variance.
Then

∀ t > 0, P(|X − E[X]| ≥ t) ≤ V(X)

t2
.

Proof. Apply Markov’s Inequality

P(|X − µ| ≥ t) = P((X − µ)2 ≥ t2) ≤ E[(X − µ)2]

t2
.

■

Example 2 (Bound for the sample mean II). If we apply Chebyshev’s inequality to the
previous example we get

P(|X − µ| ≥ t) ≤ 1

n · t2
,

which implies

κ =
1√
nδ

=⇒ |X − µ| ≤ 1√
nδ

with probability at least 1− δ.

Note that Chebyshev’s bound is tighter than Markov’s as
√
δ ≥ δ since δ ∈ [0, 1]. ♣

Iterating up to the kth moment, we get the following bound.

1 CONCENTRATION INEQUALITIES



1.1 Bounds for Bounded Random Variables 5

Proposition 3 (kth moment inequality). If X is a random variable with E[|X|k] <∞, then

∀ t > 0, P(|X − µ| ≥ t) ≤ E[|X − µ|k]
tk

.

Example 3 (Bound for the sample mean III). Using a similar logic as before we can show
that ∃Ck ∈ (0,∞) such that

E[|X − µ|k] ≤ Ck
nk/2

,

and

|X − µ| ≤ Ck√
nδ1/k

with probability at least 1− δ.

♣

Another approach involves bounding the moment generating function

Proposition 4 (Chernoff’s inequality). Let X be a random whose MGF exists at least in a
neighborhood of 0. Then

∀ t > 0, P(X ≥ µ+ t) ≤ inf
λ≥0

{E[eλ(X−µ)]
/
eλt}.

Proof. By Markov’s inequality, for λ ≥ 0,

P(X − µ ≥ t) = P(eλ(X−µ) ≥ eλt) ≤ E[eλ(X−µ)]

eλt
.

Since it holds for any λ ≥ 0 it holds also for inf. The requirement λ ≥ 0 is necessary to make the function
x 7→ eλx non-decreasing.

Let λ̃ ≤ 0. Note also that

P(X − µ ≤ −t) = P(eλ̃(X−µ) ≥ e−λ̃t) ≤ inf
λ̃≤0

E[eλ̃(X−µ)]

e−λ̃t

■

We will prove the next statement later on, when we show that all bounded random variables
are sub-Gaussian.

Proposition 5 (MGF inequality). If Z ∼ PZ ∈ P([0, 1]), then

∀λ ∈ R, E[eλ(Z−E[Z])] ≤ eλ
2/2.

Example 4 (Bound for the sample mean IV). Going back to the previous example, we can
apply Chernoff’s inequality to get

P(X − µ ≥ t) ≤ inf
λ≥0

E[eλ(X−µ)]

eλt
.

Then,

E[eλ(X−µ)] = E[e
λ
n

n∑
i=1

(Zi−µ)
]

1 CONCENTRATION INEQUALITIES



1.1 Bounds for Bounded Random Variables 6

=
n∏
i=1

E[e
λ
n
(Zi−µ)] (independence)

≤
n∏
i=1

e
λ2

n22 = e
λ2

2n . (Proposition 4)

Then

P(X − µ ≥ t) ≤ inf
λ≥0

{e
λ2

2n
−λt}

= e
n2t2

2n
−nt2 = e−

nt2

2 . (λ⋆ = nt)

Similarly

P(X − µ ≤ −t) ≤ e−
nt2

2 .

Finally, by a union bound we have

P(|X − µ| ≥ t) = P({X − µ ≤ −t} ∪ {X − µ ≥ t}) ≤ 2e−
nt2

2 .

Then we get t⋆ =
√

2 log(2/δ)
n

and

P(|X − µ| ≥ t) ≤
√

2 log(2/δ)

n
with probability at least 1− δ.

♣

We can now compare the four inequalities we’ve seen so far.

Table 1: High-Probability Bounds on |X − µ|.

Markov Chebyshev kth moment Chernoff

require E[X] E[X2] E[Xk] MGF

bound 1√
n·δ

1√
n·
√
δ

1√
n·δ1/k

√
2 log(2/δ)
√
n

Note. All the bounds share the same dependence in n but possess different dependencies in
δ. The more you assume, the tighter the bound. Say δ = 0.001, then 1/δ = 1000, whilst√

2 log(2/δ) ≈ 4.

The moment bound with an optimal choice of k is never worse than the Chernoff’s bound
based on the moment generating function. Nonetheless, the Chernoff bound is most widely
used in practice, possibly due to the ease of manipulating moment generating functions. ♦

Example 5 (Dependence in δ). Consider the case of {Z(s)
i }i∈[n],s∈[d], Z(s)

i
iid∼ P(s)

Z ∈ P([0, 1]).
Suppose our goal is to bound

sup
s∈[d]

|X(s) − µs|.

1 CONCENTRATION INEQUALITIES



1.2 Sub-Gaussian Random Variables 7

Then, we can apply first a union bound and then Markov’s inequality, i.e.,

P(sup
s∈[d]

|X(s) − µs| ≥ t) ≤
∑
s∈[d]

P(|X(s) − µs| ≥ t) (union bound)

≤ d · 1

t
√
n
. (Markov’s inequality)

Alternatively, we can apply Chernoff’s inequality

P(sup
s∈[d]

|X(s) − µs| ≥ t) ≤
∑
s∈[d]

P(|X(s) − µs| ≥ t) (union bound)

≤ d · 2e−
nt2

2 . (Chernoff’s inequality)

So

t⋆markov = d · 1

δ
√
n
, t⋆chernoff =

√
2 log(2d/δ)√

n
.

In the second case the bound blows up slower as d → ∞. The Chernoff’s bound increases
much more slowly (logarithmic in d) than the Markov bound (linear in d). ♣

1.2 Sub-Gaussian Random Variables

We now relax the assumption that PZ ∈ P([0, 1]).

Definition 1 (sub-Gaussian). A random variable X with µ = E[X] is sub-Gaussian with
parameter σ, denoted with sG(σ), if

E[eλ(X−µ)] ≤ eλ
2σ2/2, ∀λ ∈ R .

Note (Gaussians and sub-Gaussians). One may naturally ask why this condition is called
“sub-Gaussian”. To that end, we examine the following example regarding normal random
variables. Informally, a sub-Gaussian random variable will have tails that decay at least as
fast as the tails of a Gaussian random variable.

(a) If G ∼ N(µ, σ2), then for G− µ = X ∼ N(0, σ2)

E[eλ(G−µ)] = E[eλX ]

=

∫
R
eλxe−

x2

2σ2
1√
2πσ2

dx

= eλ
2σ2/2

∫
R
e−

(x−λσ2)2

2σ2
1√
2πσ2

dx

= eλ
2σ2/2.

(b) If G ∼ N(0, 1), then for ϕ the standard Gaussian density,

lim
t→∞

P(G ≥ t)
1
t

1√
2π
e−t2/2

= 1.

1 CONCENTRATION INEQUALITIES



1.2 Sub-Gaussian Random Variables 8

In addition, (
1

t
− 1

t3

)
ϕ(t) ≤ P(G ≥ t) ≤

(
1

t
− 1

t3
+

3

t5

)
ϕ(t),

which is known as the Mills’ ratio.

♦

Proposition 6 (Hoeffding’s Inequality I). If X is sG(σ), then for any t ∈ R

P(|X − µ| ≥ t) ≤ 2e−
t2

2σ2 .

Proof.

P(X − µ ≥ t) ≤ inf
λ≥0

E[eλ(X−µ)]

eλt
(Chernoff’s Inequality)

≤ inf
λ≥0

{eλ
2σ2/2−λt} (X ∼ sG(σ))

= e−
t2

2σ2 (λ⋆ = t
σ2 )

We found an upper bound for X −µ, now we also want a lower bound. Note that, by definition, since λ ∈ R,
if X is sub-Gaussian so is −X. Hence by applying the same reasoning above to −X (with mean is −µ) we
get

P(X − µ ≤ −t) = P(−X + µ ≥ t) ≤ e−
t2

2σ2 .

Finally, by a union bound

P(|X − µ| ≥ t) = P({X − µ ≤ −t} ∪ {X − µ ≥ t}) ≤ 2e−
nt2

2σ2 .

■

Example 6 (Bound for the sample mean V). Going back to the previous example, we can
now assume that Z ∼ sG(σ) and work as before by first applying Chernoff’s inequality

P(X − µ ≥ t) ≤ inf
λ≥0

E[eλ(X−µ)]

eλt
.

Then,

E[eλ(X−µ)] = E[e
λ
n

n∑
i=1

(Zi−µ)
]

=
n∏
i=1

E[e
λ
n
(Zi−µ)] (independence)

≤
n∏
i=1

e
σ2λ2

n22 = e
σ2λ2

2n . (sub-Gaussian)

Then

P(X − µ ≥ t) ≤ inf
λ≥0

{e
σ2λ2

2n
−λt}

1 CONCENTRATION INEQUALITIES



1.2 Sub-Gaussian Random Variables 9

= e
n2t2

2σ2n
−nt2

σ2 = e−
nt2

2σ2 . (λ⋆ = nt/σ2)

Similarly, −X ∼ sG(σ), thus

P(X − µ ≤ −t) ≤ e−
nt2

2σ2 .

Finally, by a union bound we have

P(|X − µ| ≥ t) = P({X − µ ≤ −t} ∪ {X − µ ≥ t}) ≤ 2e−
nt2

2σ2 .

Then we get t⋆ =
√

2 log(2/δ)
n

and

P(|X − µ| ≥ t) ≤
√

2σ2 log(2/δ)

n
with probability at least 1− δ.

♣

Sub-Gaussianity is preserved by linear operations.

Proposition 7 (Hoeffding’s Inequality II). Suppose Xi
ind∼ sG(σi), i = 1, . . . , n with mean µi.

Then

1. X ∼ sG(n−1
√∑n

i=1 σ
2
i ),

2. For any t ∈ R

P(X − µ ≥ t) ≤ e
− n2t2

2
∑n

i=1
σ2
i .

Proof. We just show that X is sub-Gaussian. The bound in (ii) follows from the traditional Hoeffding’s
inequality for sub-Gaussian random variables.

E
[
eλn

−1 ∑n
i=1(Xi−µi)

]
=

n∏
i=1

E
[
eλn

−1(Xi−µ)
]

(independence)

≤
n∏

i=1

eλ
2σ2

i /(2n
2) = e

λ2

2 ( 1
n2

∑n
i=1 σ2

i ) (Xi ∼ sG(σi))

■

Proposition 8. If Xi ∼ sG(σ) and κ ∈ R, then κXi ∼ sG(|κ|σ).

Example 7 (Bound for the sample mean VI). Let Xi ∼ sG(σ), then, from the previous
proposition we know that X ∼ sG(

√
σ2/n). Thus, by Hoeffding’s inequality

P(X − µ ≥ t) ≤ e−
nt2

2σ2 .

We can now answer to two questions:

1. How to extract the order of X − µ?

δ = e−
nt2

2σ2 =⇒ t⋆ =

√
2σ2

n
log(1/δ),

1 CONCENTRATION INEQUALITIES



1.2 Sub-Gaussian Random Variables 10

which implies that with probability at least 1− δ

X − µ ≤ σ

√
2 log(1/δ)

n
= O(

√
log(1/δ)).

2. How many samples such that X − µ ≤ ε with probability at least 1− δ?

δ = e−
nε2

2σ2 =⇒ n⋆ = σ2 log(1/δ)

ε2
.

♣

Example 8 (Some sub-Gaussian Random Variables). A list of popular sub-Gaussian random
variables:

1. Gaussian random variables are sG(σ) where σ =
√
V(X).

2. Rademacher random variable is sG(1).

E
[
eλX
]
=

1

2
eλ +

1

2
e−λ =

1

2

∞∑
k=0

(
kk

k!
+

(−λ)k

k!

)
=

∞∑
k=0

λ2k

(2k)!
,

where the last equality follows because the odd terms of the polynomial disappear. Our
goal is to show that the MGF is upper bounded by eλ

2/2. This can be shown by Taylor’s
expansion

eλ
2/2 =

∞∑
k=0

(λ2/2)
k

k!
=

∞∑
k=0

λ2k

k!2k
.

By using the fact that (2k)! ≥ k!2k ≡ (2k)!! we conclude that

E
[
eλX
]
=

∞∑
k=0

λ2k

(2k)!
≤

∞∑
k=0

λ2k

k!2k
= eλ

2/2.

3. Bounded RV with support on [a, b], a < b are sG(b − a). Instead of direct calculation,
we will use the symmetrization trick. This trick can be summarized in three steps:

(1) Let Y ′ d
= X be an independent copy of X.

(2) Apply Jenssen’s inquality.

(3) W ∼ Rademacher, W (X − Y )
d
= (X − Y )

To see this, let λ ∈ R and Y be a copy of X. We are going to use two facts Then

E[eλ(X−µ)]
(1)
= EX [eλ(X−EY [Y ])]

≤ EX,Y [eλ(X−Y )] (Jensen’s inequality)

= EX,Y,W [eλW (X−Y )] (symmetrization)

1 CONCENTRATION INEQUALITIES



1.3 Sub-Exponential Random Variables 11

= EX,Y [EW [eλ(X−Y )W | X, Y ]] (LIE)

≤ EX,Y [e
1
2
(X−Y )2λ2 ] (W ∼ SG(1))

≤ e
1
2
(b−a)2λ2 , (bounded)

where the last line implies that X ∼ sG(b− a)

♣

Note. Point (3) above relies on the following fact. Let X, Y
iid∼ F . Then Z = Y − X is

symmetric around 0. To show this we need to prove that fz(z) = fz(−z),∀z ∈ Z. So

fZ(z) =

∫ +∞

−∞
fX(x)fY (x+ z) dx (convolution)

=

∫ +∞

−∞
fX(y − z)fY (y) dy (y = x+ z)

=

∫ ∞

−∞
fX(y)fY (y − z) dy = fZ(−z) (iid, thus exchangeable)

♦

1.3 Sub-Exponential Random Variables

Sometimes the requirement of sub-Gaussianity is very stringent. We are requiring that the
probability in the tails decays as fast as e−t

2
. For example if G ∼ N(0, 1), then G2 is not

sub-Gaussian anymore! To see this

E[eλ(G2−1)] =

∫ ∞

−∞
eλ(z

2−1)e−z
2/2 dz =

e−λ√
1− 2λ

,

for λ < 1/2. Whenever, λ > 1/2, the MGF of G2 is infinite! This is what inspired the defi-
nition of sub-Exponential random variables. They are just sub-Gaussian but for a restricted
range of λ.

Definition 2 (sub-Exponential). A random variable X is sub-Exponential sE(ν, α) if

E[eλ(X−E[X])] ≤ e
λ2ν2

2 , |λ| ≤ 1

α
.

Note. If X ∼ sE(ν, 0) then X ∼ sG(ν). ♦

Example 9. In the previous example G2 ∼ sE(2, 4) because

E[eλ(G2−1)] =
e−λ√
1− 2λ

≤ e2λ
2

, |λ| ≤ 1

4
.

♣

1 CONCENTRATION INEQUALITIES



1.3 Sub-Exponential Random Variables 12

Proposition 9 (sub-Exponential Tail Bound). If X ∼ sE(ν, α), then

P[X − µ ≥ t] ≤

{
e−

t2

2v2 if 0 ≤ t ≤ v2

α

e−
t
2α for t > v2

α

There is a condition that allows us to immediately verify that a variable is sub-Exponential.

Proposition 10 (Bernstein’s Condition). Given a random variable X with mean µ = E[X]
and variance σ2 = E [X2]− µ2, we say that Bernstein’s condition with parameter b holds if∣∣E [(X − µ)k

]∣∣ ≤ 1

2
k!σ2bk−2 for k ≥ 2.

Moreover, if X satisfies the Bernstein’s condition, then X ∼ sE(
√
2σ, 2b).

Proof.

E
[
eλ(X−µ)

]
= 1 +

λ2σ2

2
+

∞∑
k=3

λk
E
[
(X − µ)k

]
k!

(Taylor’s expansion)

≤ 1 +
λ2σ2

2
+

∞∑
k=3

λk
1

2

k!σ2bk−2

k!
(Bernstein’s condition)

= 1 +
σ2

2b2
(

∞∑
k=0

(|λ|b)k − 1− |λ|b)

= 1 +
σ2

2

λ2

1− |λ|b
(geometric series)

≤ e
σ2λ2

2(1−|λ|b) (1 + x ≤ ex)

≤ eσ
2λ2

(|λ| ≤ 1/2b)

■

Proposition 11. Let X be a random variable such that 0 ≤ X ≤ b a.s. and variance σ2.
Then X ∼ sE(

√
2σ, 2b).

Proof.

|E[(X − µ)k]| = E[(X − µ)k−2(X − µ)2] ≤ bk−2σ2 ≤ 1

2
k!bk−2σ2,

where the last inequality holds for k ≥ 2. Thus, X satisfies the Bernstein’s condition, hence it is sub-
Exponential. ■

Similarly to sub-Gaussian variables, the sub-Exponential property is maintained with linear
transformations.

Proposition 12 (sum of sub-Exponential). Let Xi
ind∼ sE(νi, αi) with µi = E[Xi], then we

have that
∑n

i=1(Xi − µi) ∼ sE(
√∑n

i=1 ν
2
i ,maxi∈[n] αi).

1 CONCENTRATION INEQUALITIES



1.3 Sub-Exponential Random Variables 13

Proof.

E
[
eλ

∑n
i=1(Xi−µi)

]
=

n∏
i=1

E
[
eλ(Xi−µi)

]
(independence)

≤
n∏

i=1

e−
ν2
i λ2

2 , ∀ |λ| ≤ min
i∈[n]

1

αi
(Xi ∼ sE(νi, αi))

= eλ
2(

∑n
i=1 ν2

i )/2, ∀ |λ| ≤ 1

maxi∈[n] αi

■

Proposition 13 (Bernstein’s Inequality). Let Xi
iid∼ sE(ν, b), then

P

(
1

n

n∑
i=1

(Xi − µ) ≥ t

)
≤ exp

{
−min

(
nt2

2ν2
,
nt

2b

)}
Example 10 (Bound for the sample mean VII). Let Xi ∼ sE(ν, b), then, from the previous
proposition we know that X ∼ sE(

√
ν2/n, b). We can now answer to two questions:

1. How to extract the order of X − µ?

δ = exp

{
−n ·min

{
t2

2ν2
,
t

2b

}}
=⇒ t⋆ = max

{
ν

√
2 log(1/δ)

n
;
2 log(1/δ)

n
b

}
,

which implies that with probability at least 1− δ

X − µ ≤ ν

√
2 log(1/δ)

n
+

2 log(1/δ)

n
b = O(

√
log(1/δ)).

This means that the Bernstein’s bound has the same order in n and δ as the
Hoeffding’s bound. The latter is derived under the stronger assumption that the random
variables are sub-Gaussian though!

2. How many samples such that X − µ ≤ ε with probability at least 1− δ?

δ = exp

{
−n ·min

{
ε2

2ν2
,
ε

2b

}}
=⇒ n⋆ = max

{
2ν2

ε2
,
2b

ε

}
log(1/δ),

which is again of the same order as the sample size given by the Hoeffding’s bound.

♣

Note (Hoeffding vs Bernstein). Suppose that Xi
iid∼ PX ∈ P([0, b]) with V(Xi) ≤ ν2. Then

Xi ∼ sG(b) and Xi ∼ sE(ν, b).

We can use either Hoeffding’s or Bernstein’s inequality and get

P(X − µ ≥ t) ≤ e−
nt2

2b2 , P
(
X − µ ≥ t

)
≤ exp

{
−min

(
nt2

2ν2
,
nt

2b

)}
.

1 CONCENTRATION INEQUALITIES



1.3 Sub-Exponential Random Variables 14

Note that t ≤ b (otherwise the statement is trivial!) and ν2 ≤ b2. This implies that t/b ≥
(t/b)2 and (t/ν)2 ≥ t/b)2 hence

t2

b2
≤ min

(
t2

ν2
,
t

b

)
=⇒ UBHoeff ≥ UBBern.

The Bernstein’s bound is never worse; moreover, it is substantially better whenever σ2 << b2,
as would be the case for a random variable that occasionally takes on large values, but has
relatively small variance. Intuitively, it captures more of the Chebyshev’s effect, i.e. that
random variables with small variance should be tightly concentrated around their mean. ♦

The following is the tighter bound for bounded RVs

Proposition 14 (Bennett’s Inequality). Let Xi, i = 1, 2, . . . , n be independent such that
Xi − E[Xi] ≤ b, a.s. and with ν2i = V (Xi). Then

P

(
n∑
i=1

(Xi − E[Xi]) ≥ t

)
≤ exp

{
−
∑n

i=1 ν
2
i

b2
h

(
bt∑n
i=1 ν

2
i

)}
where h(u) = (1 + u) log(1 + u)− u.

1 CONCENTRATION INEQUALITIES



1.4 Maximal Inequality 15

Proposition 15 (Alternative Characterizations). The following are alternative characteri-
zations of a sG(σ) (left) and sE(ν, α) (right) random variable

(i) P(|X| ≥ t) ≤ 2e−t
2/K2

1 ,∀ t ≥ 0

(ii) ∥X∥Lp = (E|X|p)1/p ≤ K2 ·
√
p, p ∈ N+

(iii) E[eλ2X2
] ≤ eλ

2K2
3 , ∀|λ| ≤ 1/K3

(iv) E[eX2/K2
4 ] ≤ 2

Moreover, if E[X] = 0,

(v) E[eλX ] ≤ eλ
2K2

5

(i) P(|X| ≥ t) ≤ 2e−t
2/K2

1 ,∀ t ≥ 0

(ii) ∥X∥Lp = (E|X|p)1/p ≤ K2 · p, p ∈ N+

(iii) E[eλ|X|] ≤ e|λ|K3 , ∀λ ≤ 1/K3

(iv) E[e|X|/K4 ] ≤ 2

Moreover, if E[X] = 0,

(v) E[eλX ] ≤ eλ
2K2

5 , |λ| ≤ 1/K5

1.4 Maximal Inequality

The maximal inequality is the Jensen’s inequality for maxima. It is useful to figure out the
magnitude of the maximum of -not necessarily independent- random variables.

Proposition 16. Let (Xi)i∈[n] be a sequence of random variables. For all convex and strictly
increasing functions ψ : R → R+ ∪ {0}, we have

E
[
max
i∈[n]

Xi

]
≤ ψ−1

(
n∑
i=1

E [ψ (Xi)]

)
and P

(
max
i∈[n]

Xi ≥ t

)
≤

n∑
i=1

E [ψ (Xi)] /ψ(t)

Proof.

E[max
i∈[n]

Xi] = E
[
ψ−1

(
max
i∈[n]

ψ (Xi)

)]
(ψ(·) is strictly increasing)

≤ ψ−1E
[(

max
i∈[n]

ψ (Xi)

)]
(Jensen)

≤ ψ−1

(
E

[
n∑

i=1

ψ (Xi)

])
(ψ(x) ≥ 0,∀x ∈ R)

≤ ψ−1

(
n∑

i=1

E [ψ (Xi)]

)
(independence)

The second result follows by Markov’s inequality

P
(
max
i∈[n])

Xi ≥ t

)
= P

(
ψ

(
max
i∈[n]

Xi

)
≥ ψ(t)

)
(ψ(·) is strictly increasing)

≤
E
[
ψ
(
maxi∈[n]Xi

)]
ψ(t)

(Markov’s inequality)

≤
∑n

i=1 E [ψ (Xi)]

ψ(τ)
(ψ(x) ≥ 0,∀x ∈ R)

■
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1.5 Truncation Argument 16

Example 11 (Maximal inequality for sub-Gaussian). Let Xi
iid∼ sG(σ) and choose ψ(x) =

eλx, ψ−1(x) = 1
λ
log(x). We have

E[max
i∈[n]

Xi] ≤
1

λ
log(

n∑
i=1

E[eλXi ])
sG
≤ 1

λ
(log n+

λ2σ2

2
).

Since this bounds holds for all λ > 0 (to guarantee that ψ(·) is strictly increasing), we can
optimize over λ to get λ⋆ =

√
2 log n/σ2 implying that

E[max
i∈[n]

Xi] = O(
√

log n).

If X ∼ N this is a sharp bound. To derive a lower bound we need to work with the density
functions. ♣

1.5 Truncation Argument

Let Gi
iid∼ N(0, 1) and consider Xi = G4

i . We know that E[Xi] = 3 and we want to upper
bound, say |X − 3|. Each Xi are neither sub-Gaussian nor sub-Exponential. Technically,
they are sub-Gamma, but we can do something different to bound them.

The key idea is the following

Xi −→ Xi1(|Xi| ≤ c) −→
∣∣∣ n∑
i=1

Xi1(|Xi| ≤ c)− E[Xi1(|Xi| ≤ c)]
∣∣∣

work with the truncated version of Xi and then go back. The advantage of the truncated
version is that it is a bounded random variable.

Step 1 Find bn such that

P
(
max
i∈[n]

Xi ≥ bn

)
≤ δ

2

In this case bn = O((log n)2).

Step 2 Find εn such that
E[Xi1(Xi ≥ bn)] ≤ εn.

In this case we can choose εn = O(n−c).1

1One needs to derive εn by direct calculation, e.g.

E[Xi1(Xi ≥ bn)] =

∫ ∞

bn

P(Xi ≥ t) d = t

∫ ∞

bn

P(Gi ≥ t1/4) dt ≤
∫ ∞

bn

e−
√
t/2 dt ≈ e−c

√
bn ≈ n−c,

where integration is by substitution and parts and last bit uses bn = O((log n)2).

1 CONCENTRATION INEQUALITIES



1.6 Martingale Concentration 17

Step 3 Apply Hoeffding/Bernstein and get

P

(
1

n

n∑
i=1

(Xi1 (Xi ≤ bn)− E [Xi1 (Xi ≤ bn)]) ≤ tn)

)
≥ 1− δ/2

Since Xi1(Xi ≤ bn) are bounded random variables, we know that they are going to be

sG((log n)2). When Zi
iid∼ sG(σ) we know that Hoeffding’s inequality yields a bound of

order
√
σ2 log(1/δ)/n, therefore tn = O((log n)2

√
log(1/δ)/n).

Step 4 Combining the previous steps

P

(
1

n

n∑
i=1

(Xi − E [Xi]) ≤ tn + εn

)
≥ 1− δ

The first thing to notice is that

E[Xi] = E[Xi1(Xi ≤ bn)] + E[Xi1(Xi ≥ bn)] =⇒ E[Xi]− E[Xi1(Xi ≤ bn)] ≤ εn.

The second thing to notice is that we are working under the event {maxi∈[n]Xi ≥ bn}c,
thus Xi = Xi1(Xi ≤ bn),∀ i ∈ [n].

1.6 Martingale Concentration

So far we considered only independent random variables, but what about more complicated
structures like martingales Sn =

∑
iXi or Sn = f(X1, . . . , Xn)?.

Definition 3. {(Yk,Fk)}k≥1 is a martingale sequence if:

1. |Yk|k≥1 is {Fk}k>1-adapted which means that Yk ∈ m(Fk).

2. E [|Yk|] <∞ ∀ k

3. E [Yk+1 | Fk] = Yk ∀ k

{(Dk,Fk)}k≥1 is a martingale difference sequence (MDS) if and only if
{(∑k

s=1Ds,Fk

)}
is

a martingale sequence.

Example 12. We now give two examples of martingales:

1. Consider {Xi}i≥1 such that E [|Xi|] < ∞ and define Yk =
∑k

s=1 (Xs − E [Xs]), Fk =
σ (X1:k). Adaptation to the filtration follows by construction of generated sigma-algebra
and integrability follows by the assumption that E[|Xi|] < ∞. As per the last require-
ment

E[Yk+1 | Fk] = E[Xk+1 − E[Xk+1] | Fk] + Yk = Yk.

1 CONCENTRATION INEQUALITIES



1.6 Martingale Concentration 18

2. This example is about the Doob’s Martingale. Let Xi be independent random vari-
ables, Fk = σ(X1, . . . , Xk), and f : X n → R such that E[|f(X1:n)|] < ∞. Our goal is
to study |f(X1:n)− E[f(X1:n)]|. Define Yk = E[f(X1:n) | Fk] and Dk = Yk+1 − Yk. We
can see that {(Yk,Fk)}k≥1 is a martingale. Adaptation and integrability are immediate.
Regarding the third assumption

E [Yk+1 | Fk] = E [E [f (X1:n) | Fk+1] | Fk] = E [f (X1:n) | Fk] = Yk.

It is also immediate to show that {(Dk,Fk)}k≥1 is an MDS.

♣

The next concentration inequalities are very similar to the ones we have already seen. They
have to be understood as bounds on either Yn − Y0 or on the telescoping decomposition∑n

k=1Dk, Dk := Yk − Yk−1. Note indeed that if Xi, i ∈ [n] are independent random variables
and we are interested in studying f(X1, X2, . . . , Xn) ≡ f(X1:n), then martingales are useful
to model the concentration of the new random variable f(X1:n). Indeed, let Yk = E[f(X1:n) |
Fk], Y0 = E[f(X1:n)), Yn = f(X1:n). Then

f(X)− E[f(X)] = Yn − Y0 =
n∑
k=1

(Yk − Yk−1)︸ ︷︷ ︸
Dk

,

where {(Dk,Fk)}k≥1 is the Doob’s MDS.

Proposition 17 (Azuma-Bernstein). Let {(Dk,Fk)}k≥1 be a MDS such that

E
[
eλDk | Fk−1

]
≤ eλ

2ν2k/2 a.s., ∀ |λ| ≤ 1

αk
.

Then:

1.
∑n

k=1Dk ∼ sE(
√∑n

k=1 ν
2
k ,maxk∈[n] αk)

2.

P

(∣∣∣∣∣
n∑
k=1

Dk

∣∣∣∣∣ ≥ t

)
= 2 exp

{
−min

{
t2

2
∑

k ν
2
k

,
t

2maxk αk

}}
Note. Differently form before, now the statement on the MGF is not deterministic. Indeed,
E
[
eλDk | Fk−1

]
is a random variable, thus the statement holds almost surely. We will make

νk and αk random variables too in the future. The only requirement is that they must be
m(Fk−1). ♦

Proof.

E
[
eλ

∑n
i=1 Dk

]
= E

[
eλ

∑n−1
i=1 Dk E[eλDn | Fn−1]

]
(tower property)

= E
[
eλ

∑n−1
i=1 Dk

]
eλ

2ν2
k/2, ∀ |λ| ≤ 1

αn
(assumption)
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≤
n∏

k=1

e−
ν2
kλ2

2 , ∀ |λ| ≤ min
k∈[n]

1

αk
(repeat)

= eλ
2(

∑n
k=1 ν2

k)/2, ∀ |λ| ≤ 1

maxk∈[n] αk

■

Note. In the proof we replaced the part in which we were leveraging independence with the
part in which we leverage the tower property. Before

∑
iDi had independent summands, now

they need not to be independent. ♦

Proposition 18 (Azuma-Hoeffding). Let {(Dk,Fk)}k≥1 be a MDS such that ∃ {(ak, bk)}nk=1,
where ak, bk ∈ m(Fk−1) such that

∀ k ∈ [n] ak ≤ Dk ≤ bk, a.s. and |bk − ak| ≤ Lk ∈ R+, a.s.,

then ∑
Dk ∼ sG

1

2

√√√√ n∑
k=1

L2
k

 and P

(∣∣∣∣∣
n∑
k=1

Dk

∣∣∣∣∣ ≥ t

)
≤ 2e

− 2t2∑n
k=1

L2
k .

Proof. Follows from Azuma-Bernstein with αk → ∞. ■

Definition 4 (Bounded difference function). A function f is (L1, . . . , Ln)−BD if

|f (X1:k−1, Xk, Xk+1:n)− f (X1:k−1, X
′
k, Xk+1:n)| ≤ Lk, ∀k,X1:n, X

′
1:n.

If we change one coordinate at the time the function does not vary much.

Proposition 19 (Bounded difference inequality). Suppose f : Rn → R is L1:n−BD and Xi

are independent, then

P (|f(X1:n)− E[f(X1:n)| ≥ t) ≤ 2e
− 2t2∑n

k=1
L2
k .

Proof. Just Azuma-Hoeffing with
∑n

k=1Dk = f (X1:n)−E [f (X1:n)] , which is a MDS. We also need to find
{(Ak, Bk)}nk=1 such that |Bk −Ak| ≤ Lk to apply Azuma-Hoeffding. Recall that Dk = E [f (X1:n) | X1:k]−
E [f (X1:n) | X1:k−1]. Therefore we can bound it by simply setting

Bk = sup
x

E [f (X1:n) | X1:k−1, Xk = x]− E [f (X1:n) | X1:k−1]

Ak = inf
x

E [f (X1:n) | X1:k−1, Xk = x]− E [f (X1:n) | X1:k−1] .

which gives us Ak ≤ Dk ≤ Bk a.s. by construction and Ak, Bk ∈ m(Fk−1). ■

Example 13 (U-statistics). Let Xi
iid∼ PX ∈ P([a, b]). We want to estimate θ := EX,X′ [|X −

X ′|]. An estimator is

U (X1:n) =

(
n

2

)−1∑
i<j

|Xi −Xj| .
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It is natural to ask what is the estimation error |U (X1:n) − θ|? To do so, we show that
U (X1:n) is a bounded-difference function.

|U(X1:n)−U(X1:k−1, Xk, Xk+1:n)| =

∣∣∣∣∣
(
n

2

)−1∑
i ̸=j

(
|Xi −Xj| −

∣∣Xi −X ′
j

∣∣)∣∣∣∣∣ ≤ 4bn

n2 + o(n)
≈ 4b

n
.

Therefore U is (4b
n
, . . . , 4b

n
)−BD, hence we can apply the BD inequality and get

P(|U (X1:n)− θ| ≥ t) ≤ 2 exp

{
− t2

n8b2

n2

}
= 2 exp

{
−nt

2

8b2

}
So the estimation error is larger than t =

√
8 log(2/δ)/n with probability at least 1− δ. ♣

Example 14 (Supremum of empirical process). Consider a setting in which we observe

samples from (Zi)i∈[n]
iid∼ PZ and we are interested in estimating some parameter θ = F (PZ) ∈

Θ. To evaluate different estimators we use a loss function ℓ : Z×Θ → [0, 1]. We consider the
empirical risk R̂n(θ) =

1
n

∑n
i=1 ℓ (zi; θ) and the population risk R(θ) = E [Rn(θ)] = E[ℓ(Z; θ)].

We also consider the excess risk, defined as

ε (z1:n) ≡ sup
θ∈Θ

{
R(θ)− R̂n(θ)

}
.

We claim that ε (z1:n) is
(
1
n
, 1
n
, · · · , 1

n

)
−BD. To see this define θ⋆ := argmaxθ ε(Z1:n). Then

ε(Z1:n)− ε(Z1:n−1, Z
′
n) = R(θ⋆)− R̂(θ⋆;Z1:n)− sup

θ∈Θ

{
R(θ)− R̂n(θ;Z1:n−1, Z

′
n)
}

≤ R(θ⋆)− R̂(θ⋆;Z1:n)−R(θ⋆) + R̂n(θ
⋆;Z1:n−1, Z

′
n)

= R̂n(θ
⋆;Z1:n−1, Z

′
n)− R̂n(θ

⋆;Z1:n)

=
1

n
(ℓ(θ⋆;Zn)− ℓ(θ⋆;Z ′

n)) ≤
1

n
,

where the last inequality follows from the bounded image of the loss function. Note that
the same reasoning can be used to bound ε(Z1:n−1, Z

′
n) − ε(Z1:n). Finally, Zi are iid, thus

exchangeable hence the bound holds for all coordinates.

Then |ε (Z1:n)− E[ε (Zi:n)]| ≤
√

2 log(2/δ)
n

with probability at least 1− δ. ♣

1.6.1 Generalization of Martingale Concentration Inequalities

As we said above, Azuma-Bernstein inequality can be generalized to predictable scale param-
eters νk. By predictable we mean that νk ∈ m(Fk−1). The problem then is that statements
like

P

(∣∣∣∣∣
n∑
k=1

Dk

∣∣∣∣∣ ≥ t

)
= 2 exp

{
−min

{
t2

2
∑

k ν
2
k

,
t

2maxk αk

}}
are not meaningful anymore because the LHS is deterministic and the RHS is a random
variable.
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Proposition 20 (Freedman’s Inequality). Let {(Dk,Fk)}k≥1 be a MDS and let {νk}nk=1 be
random variable such that νk ∈ m(Fk−1). If

E
[
eλDk | Fk−1

]
≤ eλ

2ν2k/2 a.s., ∀ |λ| ≤ 1

αk
.

Then ∀ |λ| ≤ 1
αk ∣∣∣∣∣

n∑
k=1

Dk

∣∣∣∣∣ ≤ λ
n∑
k=1

ν2k +
1

λ
log(2/δ)

with probability at least 1− δ. Further, if
∑n

k=1 ν
2
k ≤ V a.s., then∣∣∣∣∣

n∑
k=1

Dk

∣∣∣∣∣ ≤ min
{√

2V · log(2/δ), 2b log(2/δ)
}

with probability at least 1− δ.

Proof. The proof is very similar to the one we used for the Azuma-Bernstein inequality. The difference is
that we don’t look directly at the MGF of

∑
kDk. In particular, in the other case we iteratively used the

fact that
E
[
eλDk | Fk−1

]
≤ eλ

2ν2
k/2 a.s.

Now we are going to use

E
[
eλDk−λ2ν2

k/2 | Fk−1

]
≤ 1.

Let |λ| ∈ [0, 1/αk]. Then

E[e
∑n

k=1(λDk−λ2ν2
k/2)] = E[e

∑n−1
k=1 (λDk−λ2ν2

k/2) E[eλDn−λ2ν2
n/2 | Fn−1]] ≤ 1

Then, by Markov’s inequality

P
(
e
∑n

k=1(λDk−λ2ν2
k/2) ≥ 2δ−1

)
≤

E
[
e
∑n

k=1(λDk−λ2ν2
k/2)

]
2/δ−1

≤ δ/2.

Finally

n∑
k=1

(λDk − λ2ν2k/2) ≥ log(2/δ) wp δ =⇒
n∑

k=1

Dk ≤ λ

n∑
k=1

ν2k/2 +
1

λ
log(2/δ) wp 1− δ/2.

The same logic can be applied to −Dk, noting that it is still a MDS and everything else follows (just think
of absorbing the - into the λ) to give ∣∣∣∣∣

n∑
k=1

Dk

∣∣∣∣∣ ≤ λ

n∑
k=1

ν2k +
1

λ
log(2/δ).

■

Proposition 21 (Doob’s Maximal Inequality). If {Xs}s≥1 is a non-negative super-Martingale,
i.e. if E[Xt | Fs] ≤ Xs, s < t, then ∀u > 0

P
(
max
0≤t≤T

Xt ≥ u

)
≤ E[X0]

u
.

If {Xs}s≥1 is a non-negative sub-Martingale, i.e. if E[Xt | Fs] ≥ Xs, s < t, then ∀u > 0

P
(
max
0≤t≤T

Xt ≥ u

)
≤ E[XT ]

u
.
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Note. Intuition is that in a super-Martingale the expectation is roughly decreasing, whilst in
a sub-Martingale is roughly increasing. ♦

Proof. Define the stopping time τ := inf{t ≥ 0 : Xt ≥ u} which describes the first time in which the
martingale goes above u. Then

P
(

max
0≤t≤T

Xt ≥ u

)
= P(Xτ ≥ u, τ ≤ T )

≤ E[Xτ1(τ ≤ T )]

u
(Markov)

=

T∑
t=0

E[Xτ1(τ = t)]

u

=

T∑
t=0

E[E[Xt | F0]1(τ = t)]

u
(⋆)

≤
T∑

t=0

E[X01(τ = t)]

u
(super-Martingale)

≤ E[X0]

u
(X is non-negative)

where we haven’t checked (⋆). ■

Note. Note that we’ve used a particular version of Markov’s inequality. Let X be a non-
negative random variable and let Y be another real-valued random variable. Then, let B ∈ BR

X1(Y ∈ B) ≥ t1(X ≥ t, Y ∈ B) a.s.

and the same proof we used for Markov’s inequality goes through. Thus

E[X1(Y ∈ B)] ≥ E[t1(X ≥ t, Y ∈ B)] =⇒ P(1(X ≥ t, Y ∈ B)) ≤ E[X1(Y ∈ B)]

t
.

♦

We can use Doob’s maximal inequality to strengthen Freedman’s inequality.

Proposition 22 (Maximal Freedman’s Inequality). Let {(Dk,Fk)}k≥1 be a MDS and let
{νk}nk=1 be random variable such that νk ∈ m(Fk−1). If

E
[
eλDk | Fk−1

]
≤ eλ

2ν2k/2 a.s., ∀ |λ| ≤ 1

αk
.

Then ∀ |λ| ≤ 1
αk
:

∀K ∈ [n]

∣∣∣∣∣
K∑
k=1

Dk

∣∣∣∣∣ ≤ λ

n∑
k=1

ν2k +
1

λ
log(2/δ)

with probability at least 1− δ.

Proof. Consider the random variable Xk = e
∑k

t=0(λDt−λ2ν2
t /2). We want to show that it is a super-martingale

with respect to its natural filtration. Indeed ∀ |λ| ≤ 1/αk

E[Xk | Fk−1] = E[e
∑k−1

t=0 (λDt−λ2ν2
t /2)eλDk−λ2ν2

t | Fk−1] = Xk−1 E[eλDk−λ2ν2
t | Fk−1] ≤ Xk−1.
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Therefore, we can immediately apply Doob’s maximal inequality and get

P
(

max
0≤t≤T

Xt ≥
2

δ

)
≤ E[X0]

2/δ
≤ δ/2.

We can rearrange this statement as follows

P
(

max
0≤t≤T

Xt ≥
2

δ

)
= P

(
∃ t ∈ [T ] : Xt ≥

2

δ

)
= 1− P

(
∀ t ∈ [T ] : Xt ≤

2

δ

)
,

which implies that

∀ k ∈ [T ]

k∑
t=0

(λDt − λ2ν2t /2) ≤ log(2/δ) wp at least 1− δ.

We can do a similar reasoning with −Dt and conclude the proof. ■

Note. The previous version was for n fixed, whereas this one is for any n! More formally,
let UB(δ, λ) := λ

∑n
k=1 ν

2
k +

1
λ
log(2/δ), then

P

(∣∣∣∣∣
K∑
k=1

Dk

∣∣∣∣∣ ≤ UB(δ, λ)

)
≥ 1− δ︸ ︷︷ ︸

Freedman

vs P

(
∀K ∈ [n],

∣∣∣∣∣
K∑
k=1

Dk

∣∣∣∣∣ ≤ UB(δ, λ)

)
≥ 1− δ︸ ︷︷ ︸

Maximal Freedman

.

Note that a statement on all K ∈ [n] can still be obtained through Freedman’s inequality and
the union bound but such bound is going to be much looser. Indeed, by using the maximal
Freedman’s inequality we can refine the probabilistic statement on the same bound and get
rid of the factor 1/K. To see this, suppose we have applied Freedman’s inequality. Then

P

(
∀K ∈ [n],

∣∣∣∣∣
K∑
k=1

Dk

∣∣∣∣∣ ≤ UB(δ, λ)

)
= 1− P

(
∃K ∈ [n],

∣∣∣∣∣
K∑
k=1

Dk

∣∣∣∣∣ ≥ UB(δ, λ)

)

= 1− P

(
n⋃

K=0

∣∣∣∣∣
K∑
k=1

Dk

∣∣∣∣∣ ≥ UB(δ, λ)

)

≥ 1−
n∑

K=0

P

(∣∣∣∣∣
K∑
k=1

Dk

∣∣∣∣∣ ≥ UB(δ, λ)

)
≥ 1− δ

K

♦

1.7 Gaussian Concentration

Definition 5 (Lipschitz functions). A function f : Rn → R is said to be L−Lipschitz with
in the ℓp-norm if ∃L > 0 such that

∀x, y ∈ Rn |f(x)− f(y)| ≤ L∥x− y∥p.

Proposition 23 (Gaussian Concentration Inequality). Let Xi
iid∼ N(0, 1) and f : Rn → R

that is L-Lipschitz in ℓ2-norm. Then
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1. f(X1:n)− E[f(X1:n)] is sG(L)

2. By Hoeffding’s inequality we have

P (|f (X1:n)− E [f (X1:n)]| ≥ t) ≤ 2 exp

(
− t2

2L2

)
To prove this statement we will also use the following lemma

Lemma 1. For any convex function ϕ : R → R and differentiable function f : Rn → R:

E[ϕ(f(X)− E[f(X)])] ≤ E
[
ϕ
(π
2
⟨∇f(X), Y ⟩

)]
, X, Y

iid∼ N (0, In)

We first prove the lemma.

Proof.

EX [ϕ(f(X)− EX [f(X)])] = EX [ϕ(f(X)− EY [f(Y )])] (Y is a copy of X)

≤ EX,Y [ϕ(f(X)− f(Y ))] (Jensen)

Define the following random variable
Z(θ) = X cos θ + Y sin θ.

The variable Z(θ) can be thought of as a path between X and Y . Indeed, when θ = 0 we get Z(θ) = X,
whilst if θ = π/2 we get Z(θ) = Y . Therefore, as θ varies in the interval [0, π, 2] we are moving from X to
Y . The rv Z has some nice properties

∀ θ ∈ [0, π, 2] Z(θ)
d
= X

d
= Y, Z ′(θ)

d
= X

d
= Y, Z(θ) ⊥⊥ Z ′(θ).

First, for a fixed θ, Z(θ) is a linear combination of standard normals, Then E[Z(θ)] = 0 and V(Z(θ)) =
V(X) cos2 θ + V(Y ) sin2 θ = (sin2 θ + cos2 θ)In = In showing that Z(θ) ∼ N(0, In). Consider now Z ′(θ) =
−X sin θ + Y cos θ. Using a similar reasoning we can show that Z ′(θ) ∼ N(0, In). Independence comes from
the fact that

E[Z(θ)Z ′(θ)] = −E[X2] cos θ sin θ + E[XY ](cos2 θ − sin2 θ) + E[Y 2] sin θ cos θ = 0.

By the Fundamental Theorem of Calculus

g(x) = g(x0) +

∫ x

x0

g′(t) dt.

Consider g(θ) = f(Z(θ)) and let x = π/2 and x0 = 0, then

g(π/2) = g(0) +

∫ π/2

0

g′(t) dt, where g′(θ) = ⟨∇(f(Z(θ)), Z ′(θ)⟩.

By definition of g(·) we also know that g(π/2) = f(Y ) and g(0) = X, thus

f(Y )− f(X) =

∫ π/2

0

⟨∇(f(Z(θ)), Z ′(θ)⟩dθ,

which implies

E[ϕ(f(Y )− f(X))] = E

[
ϕ

(∫ π/2

0

⟨∇(f(Z(θ)), Z ′(θ)⟩dθ

)]

1 CONCENTRATION INEQUALITIES
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= E

ϕ
π2

∫ π/2

0

2

π
⟨∇(f(Z(θ)), Z ′(θ)⟩dθ︸ ︷︷ ︸∫ π/2

0 f(θ)h(θ) dθ=Eθ[h(θ)]


 (think of θ ∼ U [0, π, 2])

≤ E

[∫ π/2

0

2

π
ϕ
(π
2
⟨∇(f(Z(θ)), Z ′(θ)⟩

)
dθ

]
(Jensen)

=
2

π

∫ π/2

0

E
[
ϕ
(π
2
⟨∇(f(Z(θ)), Z ′(θ)⟩

)]
dθ (Fubini)

= E
[
ϕ
(π
2
⟨∇(f(X), Y ⟩

)]
,

where the last equality exploits the fact that the term E
[
ϕ
(
π
2 ⟨∇(f(Z(θ)), Z ′(θ)⟩

)]
is constant for all θ as

Z(θ) and Z ′(θ) are standard normals. ■

We now prove the Gaussian concentration inequality, based on the interpolation method.
We will show a weaker version of the proposition, where we will get a factor larger than one
in front of L.

Proof. Let’s use the lemma with ϕ(·) = exp(λ·).

EX,Y [exp(λ(f(X)− E[f(X)]))] ≤ EX,Y

[
exp

(
λ
π

2
⟨∇f(x), Y ⟩

)]
(lemma)

= EX

[
EY

[
exp

(
λ
π

2
⟨∇f(x), Y ⟩ | X

)]]
(tower rule)

= EX

[
eλ

2 π2

4 ∥∇f(x)∥2
2/2
]

(E[e⟨µ,Y ⟩] = e
1
2∥µ∥

2
2)

≤ eλ
2 π2

4 L2/2 ∼ sG
(π
2
L
)
,

where the last step uses the IVT, the fact that f is Lipschitz and differentiable to show that ∇f(X) is
bounded by L. ■

Let’s see a bunch of applications.

Example 15 (Order Statistics). Let Xi
iid∼ N(0, 1) and define fk(X1:n) = X(k). To study the

concentration of this random variable we want to show that it is L-Lipschitz. Thus

|fk(X1:n)− fk(Y1:n)| = |X(k) − Y(k)| ≤

√√√√ n∑
k=1

(X(k) − Y(k))2 ≤

√√√√ n∑
k=1

(Xk − Yk)2 = ∥X − Y ∥2,

where the last equality is called the sorting inequality. Therefore∣∣X(k) − E
[
X(k)

]∣∣ ≤ O(
√

log(1/δ)).

♣

Example 16 (Singular values of Gaussian random matrices). Let X ∈ Rn×d where each
element is Xij ∼ N(0, 1). Define fk(X) = σk(X) and f1(X) = ∥X∥op, where

∥X∥op = inf
v∈Rd

{∥Xv∥ : ∥v∥ = 1}.

♣
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Example 17 (Gaussian Complexity). Given a set A ⊆ Rn, how can we measure its “size”?
A reasonable size function S should satisfy at least A ⊆ B =⇒ S(A) ≤ S(B). Two examples
of S are the Euclidean width D(A) = maxx∈A ∥x∥2 and the dimension.

Let w := (w1, . . . , wn)
′ ∈ Rn, wi

iid∼ N(0, 1). The Gaussian complexity (or “statistical dimen-
sion”) of a set A ⊆ Rn is defined as

G(A) := EW∼N(0,In)[sup
a∈A

⟨a,w⟩].

We can think of w as being random noise and we want to understand how “aligned” A is
with this noise. This follows from the geometric intuition that the inner product of two vector
is 0 if they are orthogonal and it’s maximized when they are parallel.

Define f(w) = supa∈A⟨a,w⟩. We want to show that it concentrates around G(A). To
do so, we show that f(w) is Lipschitz. Let A be compact for simplicity and define a⋆ =
argmaxa∈A⟨a,w⟩. Then

f(w)− f(w′) = ⟨a⋆,w⟩ − sup
a∈A

⟨a,w⟩

≤ ⟨a⋆,w⟩ − ⟨a⋆,w⟩
= ⟨a⋆,w −w′⟩
≤ ∥a⋆∥2∥w −w′∥2 (Cauchy-Schwarz)

≤ sup
a∈A

∥a∥2∥w −w′∥2 (a⋆ depended on w)

= D(A)∥w −w′∥2,

therefore f(w) ∼ sG(D(A)). ♣

1.8 Extensions

Let X1, X2, . . . , Xn be independent and suppose we are interested in a rv Z = f(X1:n) where
f : Rn → R. How do study the concentration of Z?

1. Martingale concentration by using the Bounded difference inequality we can show
that

f(X1:n)− E[f(X1:n)] ∼ sG

(
n∑
k=1

L2
k

)
Requirements:

i) f is (L1, . . . , Ln)−BD, i.e.

|f (X1:k−1, Xk, Xk+1:n)− f (X1:k−1, X
′
k, Xk+1:n)| ≤ Lk, ∀k,X1:n, X

′
1:n.

ii) X1, X2, . . . , Xn are independent

Examples: U-statistics, supremum of empirical process
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2. Gaussian concentration by using the Gaussian concentration inequality we can show
that

f(X1:n)− E[f(X1:n)] ∼ sG (L)

Requirements:

i) f is L-Lipschitz, i.e. ∀x, y ∈ Rn, |f(x)− f(y)| ≤ L∥x− y∥p
ii) Xi

iid∼ N(0, 1)

Examples: Gaussian complexity, singular values of Gaussian random matrix

There are two general principles here:

1. We require the function f(·) to be stable with respect to perturbations of X

2. Require the measure of X to be well-behaved

1.8.1 Convexity

See Wainwright Ch. 3 for a more technical introduction.

Proposition 24 (Convex I). Let X1, X2, . . . , Xn be independent and Xi ∈ [a, b] a.s. Suppose
that f is L-Lipschitz and separately convex, i.e. ∂2

∂X2
i
f(X1:n) ≥ 0. Then

P(f(X1:n)− E[f(X1:n)] ≥ t) ≤ e
− t2

4L2(b−a)2 .

This is just a bound for the upper tail.

Note that if you don’t have convexity, you can still show that f is L(b− a)−BD and apply
the martingale concentration bound but then you’d get a factor of n in the denominator so
the bound gets larger.

Proposition 25 (Convex II). Let X1, X2, . . . , Xn be independent and Xi ∈ [a, b]. Suppose
that f is L-Lipschitz and convex, i.e. ∇2f(X1:n) exists and positive definite. Then

f(X1:n)− E[f(X1:n)] ∼ sG (L(b− a)) .

By assuming convexity we also get the lower bound.

Example 18 (Rademacher Complexity). Consider a set A ⊆ Rn. Gaussian Complexity is
defined as

G(A) := EW∼N(0,In)[sup
a∈A

⟨a,w⟩],

whereas the Rademacher complexity is

R(A) := E
εi

iid∼U({−1,1})[sup
a∈A

⟨a, ε⟩].
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We’ve seen that supa∈A⟨a,w⟩ is D(A)−Lipschitz and used the Gaussian concentration in-
equality to show that it concentrates around its expectation. Now we can no longer apply the
same result, because ε are not Gaussian and the function is not Lipschitz.

Let’s consider some properties of these two measures.

Definition 6 (Dual norm). Let ∥ · ∥ be a norm in Rn. The associated dual norm is defined
as

∥x∥∗ = sup {⟨x, z⟩ : ∥z∥ ≤ 1} .

If we consider the ℓp−norm, then

∥x∥∗ ≡ sup
z∈Bp(1)

⟨x, z⟩.

By Holder’s inequality, the dual norm of the ℓp−norm is the ℓq−norm, where 1
p
+ 1

q
= 1 that

is q = p
p−1

.

Let 1 < p <∞, then define the ℓp-ball of radius r as

Bp(r) ≡ {x ∈ Rn : ∥x∥p ≤ r}

Then, the Gaussian complexity of Bp(r) is

G(Bp(r)) = E

[
sup

∥x∥p≤r
⟨x,w⟩

]
= r · E

[
sup
Bp(1)

⟨x,w⟩

]
= r · E [∥w∥q] = O

(
n

1
q

)
,

where the last equality follows from the fact that

E[∥w∥q] ≤

 n∑
i=1

E[|wi|q]︸ ︷︷ ︸
O(1)


1/q

≈ O(n1/q).

The Rademacher complexity of Bp(r) is

R (Bp(r)) = E

[
sup

a∈Bp(r)

⟨a, ε⟩

]
= E [∥ε∥q] = E

( n∑
i=1

|εi|q
) 1

q

 = n1/q.

Therefore, both complexity are of the same order. Now suppose p = 1. Recall that the dual
norm of the ℓ1−norm is the ℓ∞−norm. Thus

R (B1(1)) = E

[
sup

a∈B1(1)

⟨a, ε⟩

]
= E [∥ε∥∞] = 1,

G(B1(r)) = E

[
sup

x∈B1(1)

⟨x,w⟩

]
= E [∥w∥∞] ≈

√
2 log n.
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Define f(ε) = supa∈A⟨a, ε⟩. We have already shown that this function is D(A)−Lipschitz.
Now, note that ⟨·, ·⟩ is linear hence affine. Since the supremum of affine functions is convex,
we have that f(ε) is convex, D(A)−Lipschitz, and bounded in [−1, 1]. Therefore

f(ε) ∼ sG(2D(A)),

which is of the same order as the Gaussian complexity!

Later on in this class we will use the Rademacher complexity or the Gaussian complexity to
upper bound other quantities of interest and show that they concentrate too! ♣

1.8.2 Log-Concavity

Definition 7 (Log-concave). Let f : Rn → R. We say that f is γ−strongly log-concave if
f(x) = exp(−ψ(x)) and ψ(x) is γ−strongly convex, i.e., ∇2ψ(x) ⪰ γIn if exists.

The name comes from the fact that log f(x) is strongly concave in the traditional sense.

Example 19. Suppose we have a random vector X whose distribution belongs to the expo-
nential family, i.e.,

Pθ(x) =
1

z(θ)
exp(⟨θ, T (x)⟩).

Suppose we have a prior π(θ) ∼ N(0, In). The posterior distribution is

p(θ | x) ∝ Pθ(x)π(θ) ∝= exp(−ψ(θ))

where ψ(θ) = −⟨θ, T (x)⟩+ 1
2
∥θ∥22+log z(θ). Strong convexity of ψ(·) comes from the fact that

the first element as null Hessian, the second has identity, and, as a result from properties of
the exponential family, ∇2 log z(θ) = V(T (X)) which is always positive definite. In particular,
ψ(·) is 1−strongly convex. ♣

Proposition 26 (log-concave). Let X ∼ µ be a random vector, where µ is γ−strongly log-
concave. Suppose that f is L-Lipschitz. Then

f(X1:n)− E[f(X1:n)] ∼ sG(L/
√
γ).

This is just a bound for the upper tail.

Note. Note that this is the first concentration inequality in which we didn’t require indepen-
dence or X being a Martingale.

When γ is equal to 1 it is equivalent to the Gaussian Concentration inequality, but we haven’t
assumed normality of the Xs. ♦

1.9 Efron-Stein Inequality

We first prove the following auxiliary lemma. It is basically a decomposition of the variance of
Z in n terms. In each term the expectation E[X] is substituted by the conditional expectation
of Z on all but one of the Xis.
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Lemma 2. Let X1, X2, . . . , Xn be independent random variable and Z = f(X1, . . . , Xn) be a
square integrable function. Let X−ℓ = (X1, . . . , Xℓ−1, Xℓ+1, . . . , Xn)

′. Then

V(Z) ≤
n∑
i=1

E[(Z − E[Z | X−i])
2].

Proof. First, define the martingale difference sequence Dℓ := E[Z | X1:ℓ]− E[Z | X1:ℓ−1], ℓ = 2, 3, . . . , n with
E[Z | X1:n] = Z since Z is σ(X1:n)−measurable and D1 := E[Z | X1] − E[Z]. When we sum over this mds
all the terms simplify except for Z and E[Z]. Therefore, we can use the telescopic sum trick to rewrite

Z − E[Z] =
n∑

ℓ=1

(E[Z | X1:ℓ]− E[Z | X1:ℓ−1]).

Thus

V(Z) = E[(Z − E[Z])2] = E[(
n∑

ℓ=1

Dℓ)
2].

By the law of iterated expectations, if {Dℓ}ℓ is an mds with respect to the filtration {Fℓ}ℓ, then it is also
uncorrelated, indeed fix j, k ∈ [n], j > k. Then

E[DjDk] = E[E[DjDk | Fk]] = E[E[Dj | Fk]Dk] = 0.

Therefore,

V(Z) = E[(
n∑

ℓ=1

Dℓ)
2] =

n∑
ℓ=1

E[D2
ℓ ].

Finally, note the following key fact

EXℓ:n
[Z | X1:ℓ−1] = EXℓ+1:n

[EXℓ
[Z | X1:ℓ−1, Xℓ+1:n] | X1:ℓ−1]

= EXℓ+1:n
[EXℓ

[Z | X1:ℓ−1, Xℓ+1:n] | X1:ℓ],

where the first equality comes from the tower rule of expectations and the second one comes from the fact that
the inner expectation is a function of X−ℓ and Xℓ ⊥⊥ Xj ,∀ j ̸= ℓ so we can add it to the outer conditioning
set. Thus

D2
ℓ = (EXℓ+1:n

[Z | X1:ℓ]− EXℓ:n
[Z | X1:ℓ−1])

2

= (EXℓ+1:n
[Z | X1:ℓ]− EXℓ+1:n

[EXℓ
[Z | X1:ℓ−1, Xℓ+1:n] | X1:ℓ])

2

= (EXℓ+1:n
[Z − EXℓ

[Z | X1:ℓ−1, Xℓ+1:n] | X1:ℓ])
2

≤ EXℓ+1:n
[(Z − EXℓ

[Z | X1:ℓ−1, Xℓ+1:n])
2 | X1:ℓ], (Jensen’s)

then taking the expectation with respect to X1:ℓ on both sides we get

∀ ℓ ∈ [n], E[D2
ℓ ] ≤ E[(Z − E[Z | X−ℓ])

2] =⇒ V(Z) ≤
n∑

ℓ=1

E[(Z − E[Z | X−ℓ])
2],

which was to be shown. ■

Proposition 27 (Efron-Stein Inequality). Let X1, X2, . . . , Xn be independent random vari-
able and Z = f(X1, . . . , Xn) be a square integrable function. Moreover, if X ′

1, . . . , X
′
n are

independent copies of X1, . . . , Xn and if we define, for every i = 1, . . . , n

Z ′
i = f (X1, . . . , Xi−1, X

′
i, Xi+1, . . . , Xn) ,
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we have

V(Z) ≤ 1

2

n∑
ℓ=1

E[(Z − Z ′
ℓ)

2] =
n∑
ℓ=1

E[(Z − Z ′
ℓ)

2
+] =

n∑
ℓ=1

E[(Z − Z ′
ℓ)

2
−],

where x+ = max(x, 0) and x− = max(−x, 0) denote the positive and negative parts of a real
number x, respectively.

Proof. The first part of the Efron-Stein inequality follows from the fact that if X,Y are iid and, wlog,
mean-zero, then

1

2
E[(X − Y )2] =

1

2
E[X2 + Y 2 − 2XY ] =

1

2
E[X2 + E[Y 2|X]− 2X E[Y | X]] = V(X).

Thus, since Z and each Z ′
ℓ are iid and using the previous lemma

V(Z) ≤
n∑

ℓ=1

E[(Z − E[Z | X−ℓ])
2] =

1

2

n∑
ℓ=1

E[(Z − Z ′
ℓ)

2].

Let’s now prove the other two equalities. Let Y be a rv symmetric around 0, then

E[Y 2] =

∫ 0

∞
y2 dF (y) +

∫ ∞

0

y2 dF (y) = 2

∫ ∞

0

y2 dF (y) = 2

∫ ∞

0

max{0, y}2 dF (y),

and

E[Y 2] =

∫ 0

∞
y2 dF (y) +

∫ ∞

0

y2 dF (y) = 2

∫ 0

−∞
y2 dF (y) = 2

∫ 0

−∞
max{0,−y}2 dF (y).

Since Z,Z ′ are iid, X −X ′ is symmetric around 0 which concludes the proof. ■

Corollary 1 (Jackknife Bound). Let Z−ℓ := hℓ(X1, . . . , Xℓ−1, Xℓ+1, . . . , Xn) for arbitrary
measurable functions hℓ : X n−1 → R. Then

V(Z) ≤
n∑
ℓ=1

E[(Z − Z−ℓ)
2]

Proof. For any rv X with finite second moment E[(X − E[X])2 ≤ E[(X − a)2],∀ a ∈ R . Using this fact
conditionally

E[(Z − E[Z | X−ℓ])
2 | X−ℓ] ≤ E[(Z − Z−ℓ)

2 | X−ℓ],

where the second term is well-defined as long as hℓ are measurable with respect to σ(X−ℓ). Taking expecta-
tions wrt X on both sides and using the tower rule concludes the proof. ■

This corollary is useful to prove that the Jackknife estimator (Efron and Stein 1981) yields

a conservative estimate of the variance of an estimator of the form θ̂ = f(X).

Corollary 2. If f has the bounded difference property with constants c1, . . . , cn, then Efron-
Stein implies that

V(Z) ≤ 1

2

n∑
i=1

c2i .
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Intermezzo: Stochastic Processes and Uniform Convergence

Pointwise and Uniform Convergence

Definition 8 (Pointwise Convergent). Let (X, d) be a metric space and fn : X → R(n ∈ N)
a sequence of functions. Then fn converges pointwise to f if

∀x ∈ X, ∀ ε > 0,∃Nε,x ∈ N : d(fn(x), f(x)) < ε,∀n ≥ Nε,x

Example 20. The sequence of functions fn(x) = xn/n converges pointwise to zero on the
interval X = [−1, 1], because for each x ∈ [−1, 1] one has |xn/n| ≤ 1/n, and thus

lim
n→∞

xn

n
= 0

♣

Note. Pointwise convergent sequence of functions might have some problems

1. The limit of a pointwise convergent sequence of continuous functions does not have to
be continuous.

2. The derivatives of a pointwise convergent sequence of functions do not have to converge.

3. The integrals of a pointwise convergent sequence of functions do not have to converge.

An example of 1. is fn(x) = xn1[0,1](x). If we fix x ∈ [0, 1), then limn→∞ fn(x) = 0, if instead
x = 1, then limn→∞ fn(x) = 1. ♦

Definition 9 (Uniform Convergent). Let (X, d) be a metric space and fn : X → R(n ∈ N) a
sequence of functions. Then fn converges uniformly to f if

∀ ε > 0,∃Nε ∈ N : d(fn(x), f(x)) < ε,∀n ≥ Nε,∀x ∈ X,

Note. Uniform convergence requires the same ε to be valid for all points in the domain. It
can be thought of as requiring the sequence of functions to lay in a sleeve.

If the functions are bounded, the convergence above is equivalent to require that

sup
x∈X

|fn(x)− f(x)| → 0.

Uniform convergence preserves many properties of the converging sequence:

1. The limit of a uniformly convergent sequence of continuous functions is continuous.

2. The limit of a uniformly convergent sequence of integrable functions is integrable

3. The limit of a uniformly convergent sequence of differentiable functions is differentiable

♦
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Stochastic Processes and Empirical Processes

Let (Ω,F ,P) be a probability space and let I be an index set, and let S be the state space
(usually a locally compact, complete metric space).

Definition 10 (Stochastic process). A stochastic process is a defined as a measurable function
i 7→ Xi, X : I× Ω → S or, alternatively, ∀ i ∈ I, X(i, ·) : Ω → S. It can be characterized in
the following ways:

1. i ∈ I fixed, then X(i, ·) : Ω → S is an S−valued random variable (marginal).

2. ω ∈ Ω fixed. Then X(·, ω) : I → S is a random trajectory.

3. X : Ω → SI = {space of S-valued functions with domain I}

If X1, . . . , Xn are i.i.d. real-valued random variables with cumulative distribution function
(c.d.f.) F then the empirical distribution function (e.d.f.) Fn : R → [0, 1] is defined as

Fn(x) :=
1

n

n∑
i=1

1(−∞,x] (Xi) , for x ∈ R.

In other words, for each x ∈ R, the quantity nFn(x) simply counts the number of Xi ’s that
are less than or equal to x. The e.d.f. is a natural unbiased (i.e., E [Fn(x)] = F (x) for all
x ∈ R ) estimator of F . The corresponding empirical process is

Gn(x) =
√
n (Fn(x)− F (x)) , for x ∈ R

Note that both Fn and Gn are stochastic processes (i.e., random functions) indexed by the
real line (I = R using the above notation). By the strong law of large numbers (SLLN), for
every x ∈ R, we can say that

Fn(x)
a.s.→ F (x) as n→ ∞.

Also, by the central limit theorem (CLT), for each x ∈ R, we have

Gn(x)
d→ N(0, F (x)(1− F (x))) as n→ ∞.

Two of the basic results in empirical process theory concerning Fn and Gn are the Glivenko-
Cantelli and Donsker theorems. These results generalize the above two results to processes
that hold for all x simultaneously.
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2 Uniform Laws of Large Numbers

Reference: Wainwright (2019), Ch. 4.

2.1 Uniform Convergence for CDFs: Glivenko-Cantelli

Suppose Xi
iid∼ X ∈ [0, 1], where X has CDF F (t) = P(X ≤ t). Consider the empirical CDF

F̂n(t) =
1

n

n∑
i=1

1(Xi ≤ t).

For fixed t, {F̂n(t)}n≥1 is a sum of iid variates, thus bu LLN we have that

lim
n→∞

F̂n(t)− F (t) a.s.,

which shows that the ECDF is pointwise consistent for the true CDF. What if we want to
prove some stronger form of convergence, say, in the ℓ∞−norm

sup
t∈[0,1]

|F̂n(t)− F (t)| = ∥Fn − F∥∞.

Note that ∥Fn − F∥∞ is a random object!!

Note. Pointwise convergence does not necessarily imply uniform convergence. We can come
up with examples such that

∀ t ∈ [0, 1] lim
n→∞

f̂n(t) = f(t) a.s. but ∥fn − f∥∞ ̸→ 0 a.s.

♦

Theorem 1 (Glivenko (1933)-Cantelli (1933) theorem). Let Xi
iid∼ X, then

∥Fn − F∥∞ = sup
t∈[0,1]

|F̂n(t)− F (t)| → 0 a.s.

In this course, we will prove a quantitative version of this theorem, that is

P

(
∥Fn − F∥∞ ≥

√
8 log(n+ 1)

n
+ δ

)
≤ exp

(
−nδ

2

2

)
.

This result also implies a.s. convergence by Borel-Cantelli lemma.

Definition 11. Let V be a vector space. A functional γ : V → R is continuous at F in the
sup-norm if

∀ ε > 0,∃ δ > 0 : ∥G− F∥∞ < δ =⇒ |γ(G)− γ(F )| < ε
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Proposition 28 (Continuous Mapping Theorem). Let Xn be a sequence of random variables.
Then

Xn
d→ X ⇒ g (Xn)

d→ g(X), Xn
p→ X ⇒ g (Xn)

p→ g(X), Xn
a.s.→ X ⇒ g (Xn)

a.s.→ g(X).

Proof. We show p, and then a.s. Note that showing the latter would suffice as a.s. =⇒ p =⇒ d, however
it is constructive to show all of them.

Suppose Xn
p→ X and consider the continuous function g(·). By definition of continuity of g(·) at X

∀ ε > 0,∃ δε > 0 : ∥Xn −X∥ < δε =⇒ |g(Xn)− g(X)| < ε.

Hence whenever ∥Xn −X∥ < δε realizes so does |g(Xn)− g(X)| < ε but not the viceversa, hence the latter
has a probability of realizing no smaller than the former. Therefore

P(|g(Xn)− g(X)| < ε) ≥ P(|Xn −X| < δε) → 1,

where the last statement follows from the convergence in probability of Xn → X

∀M > 0, P(|Xn −X| ≤M) → 1

and picking M = δε.

Suppose Xn
a.s.→ X and consider the continuous function g(·). Using a similar intuition as for the first proof,

recall that continuous functions preserve limits, i.e.

lim
n→∞

Xn(ω) = X(ω) =⇒ lim
n→∞

g(Xn(ω)) = g(X(ω))

Thus

P({ω : lim
n→∞

g(Xn(ω)) = g(X(ω))}) ≥ P({ω : lim
n→∞

Xn(ω) = X(ω)}) = 1

■

An implication of GCT and the CMT is that if γ(F ) is a functional of F , where γ(·) is
continuous with respect to the ℓ∞−norm, then uniform convergence implies that

γ(F̂n) → γ(F ).

Example 21 (Goodness-of-fit test).

γ(F ) =

∫
(F (t)− F0(t))

2 dF (t).

♣

2.2 Uniform Laws for more general function classes

Consider Xi
iid∼ X, where X ∼ P and consider the set of integrable functions

F ⊆ {f : X → R,EX∼P[|f(X)|] <∞}.
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Consider an empirical process indexed by F :{
f ∈ F :

√
n

(
1

n

n∑
i=1

f (xi)− E[f(x)]

)}
sometimes also written as {

f ∈ F :
√
n

(
1

n

n∑
i=1

f (·)− E[f(·)]

)}

Formally, an empirical process G over a class of functions F is a function that maps elements
(ω, f) ∈ Ω × F to, typically, R. It is just a stochastic process where the index set I is a
set of functions rather than Z or R. As such G(·, f) is a random variable that converges in
distribution to N(0,V f) for each single f ∈ F . The beauty of G(·, ·) is that is allows us to
make statements on the whole class F rather than for a single element f at a time.

Define the empirical distribution of Xi as

Pn =
1

n

n∑
i=1

δXi
.

Define the random variable

∥Pn − P∥F := sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f (Xi)− E[f(X)]

∣∣∣∣∣
which measures the absolute deviation between the sample average and the pop-
ulation average, uniformly over the class F . Note that the supremum is over functions,
so we cannot apply our classical results on asymptotic theory that we know. Note that
∥Pn − P∥F is a random variable, where the randomness comes from X. Therefore, we can
apply our traditional results to ∥Pn − P∥F !

Definition 12. We say that a class of functions F is a Glivenko-Cantelli (GC) class for P
if and only if

∥Pn − P∥F
P→ 0

as n → ∞, where
P→ denotes convergence in probability under P. The class of functions F

satisfies a strong Glivenko-Cantelli law if ∥Pn − P∥F
a.s.→ 0.

Note. If F1 ⊆ F2, then if F2 is GC for P, then F1 is GC for P. This is verified because
supf∈F1

≤ supf∈F2
. ♦

Example 22 (GC classes). An example of a GC class is the one related to GC theorem.

Indeed, we know that ∥F̂n − F∥∞ → 0 a.s. Remember that in this case the statement

∥Pn − P∥F = sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f (Xi)− E[f(X)]

∣∣∣∣∣
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is simply

∥F̂n − F∥∞ = sup
t∈[0,1]

∣∣∣∣∣ 1n
n∑
i=1

1(Xi ≤ t)− E[1(X ≤ t)]

∣∣∣∣∣ .
We can thus think of ∥F̂n − F∥∞ as the supremum of an empirical process indexed by F ,
where the class of functions is

F = {1(X ≤ t), t ∈ [0, 1]} ≡ {1(· ≤ t), t ∈ [0, 1]}.

An example of a class of functions that is not GC is given by

F = {1S | S ∈ S}, S = {S ⊆ [0, 1] : #S ∈ N},

when we have a sample of Xi
iid∼ P ∈ P([0, 1]). To see this

∥Pn − P∥F = sup
S∈S

∣∣∣∣∣∣∣∣∣
1

n

n∑
i=1

1(Xi ∈ S)︸ ︷︷ ︸
=1

−E[1(Xi ∈ S)]︸ ︷︷ ︸
=0

∣∣∣∣∣∣∣∣∣ = 1,

The first equality follows because, for fixed n, the realization {X1, X2, . . . , Xn} ∈ [0, 1]n is
a finite set so it belongs to S. The second equality follows because we assumed Xi to have
density, hence P(S) = 0,∀S ∈ S. ♣

Example 23 (Empirical risk minimization). Why we care about max of empirical process in
stats and ML? They lie at the heart of methods based on empirical risk minimization.

Data distribution: (Xi)i∈[n] ∼ P ∈ {Pθ : θ ∈ Θ}.

Loss function: ℓ : X ×Θ → R.

Empirical risk: Rn(θ) =
1
n

∑n
i=1 ℓ(Xi; θ)

Empirical risk minimizer: θ̂ = argmin
θ

Rn(θ)

Population risk minimizer: θ⋆ = argmin
θ

R(θ)

Excess risk: ε = R(θ̂)−R (θ⋆)

To bound the excess risk, we typically decompose it

ε = R(θ̂)−Rn(θ̂) +Rn(θ̂)−Rn (θ
⋆)︸ ︷︷ ︸

≤0

+Rn (θ
⋆)−R (θ⋆)

The pink term is non-positive because θ̂ ∈ argminθ Rn(θ). The green term can be handled
using standard concentration inequalities but we cannot handle the orange one despite it
looks similar. Why? Well, we can’t use Hoeffding’s inequality on the second one because the
summands in

Rn(θ̂) =
1

n

n∑
i=1

ℓ
(
Xi; θ̂

)
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are not independent because θ̂ is data dependent, whilst the summands in

Rn(θ
⋆) =

1

n

n∑
i=1

ℓ (Xi; θ
⋆)

are iid!

We just need to handle the orange term, that is

R(θ̂)−Rn(θ̂) = E[ℓ(X; θ̂)]− 1

n

n∑
i=1

ℓ
(
Xi; θ̂

)
≤ sup

θ∈Θ

∣∣∣∣∣E[ℓ(X; θ)]− 1

n

n∑
i=1

ℓ (Xi; θ)

∣∣∣∣∣ = ∥Pn−P∥F

We can see that the orange term is upper bounded by the supremum of the empirical process
associated to the class of functions F = {ℓ(·; θ) : θ ∈ Θ} (note that for each θ we have a
different loss function). Note that also the green term is dominated by this term! Therefore
we conclude that the excess risk is at most 2∥Pn − P∥F . ♣

2.3 Uniform Laws via Rademacher Complexity

The previous examples motivated why we care about the empirical process ∥Pn − P∥F . We
saw that it upper bounds the excess error in a risk minimization problem, for example. As
such we know try to work with this term and construct bounds for it.

Definition 13. Consider a set A ⊆ Rn and let ε := (ε1, ε2, . . . , εn)
′, εi

iid∼ U({−1, 1}). The
Rademacher complexity of the set A is defined as

R(A) := Eε[sup
a∈A

⟨a, ε⟩].

Note. Sometimes Rademacher complexity is defined as R(A) := Eε[supa∈A |⟨a, ε⟩|], but this
is just equal to

R(|A|) = Eε[ sup
a∈|A|

⟨a, ε⟩],

where |A| := A ∪ (−A). In practice R(A) and R(|A|) are of the same order so it does not
matter with which one we work. ♦

The above definition regards sets, but we can have a similar definition for classes of functions!
To achieve this let F ⊆ {f : X → R} be a class of functions and consider (xi)i∈[n] ∈ X be
any fixed collections of points. Define the set of all vectors in Rn that can be obtained by
applying a function f ∈ F to such collection as

F(x1:n) ≡ {(f(x1), . . . , f(xn) : f ∈ F} ⊆ Rn,

Note that the set A = F(x1:n)/n in a set in Rn, thus we can just apply the previous definition
of Rademacher complexity to it.
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Definition 14 (Empirical Rademacher Complexity of function class F on x1:n). The Em-
pirical Rademacher complexity of function class F is

R (F(x1:n)/n) = Eε

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif (xi)

∣∣∣∣∣
]
.

If we think of the collection of points x1:n as a random sample of X, then we obtain the
following definition.

Definition 15 (Rademacher Complexity of function class F with measure P). Let F ⊆ {f :

X → R} be a class of functions and consider (Xi)i∈[n]
iid∼ P ∈ P(X ). Then, the Rademacher

complexity of function class F with measure P is

Rn (F) := EX,ε

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif (Xi)

∣∣∣∣∣
]
.

Note. First, note that

Rn (F) = EX [R (F(x1:n)/n)]

= EX

[
Eε

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif (Xi)

∣∣∣∣∣ | X1:n

]]

= EX,ε

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif (Xi)

∣∣∣∣∣
]
. (tower rule)

Here is some intuition for why the Rademacher complexity is a measure of the complexity of a
function class. First note that if F1 ⊆ F2, then R(F1) ≤ R(F2). Note that the Rademacher
complexity is the average of the maximum correlation between the vector (f(X1), . . . , f(Xn))
and the “noise vector” (ε1, . . . , εn), where the maximum is taken over all functions f ∈ F .
The intuition is a natural one: a function class is extremely large–and, in fact, “too large”
for statistical purposes–if we can always find a function that has a high correlation with a
randomly drawn noise vector. Conversely, when the Rademacher complexity decays as a
function of sample size, then it is impossible to find a function that correlates very highly in
expectation with a randomly drawn noise vector.

♦

Example 24. Let ψ : Rd → Rp be a fixed feature map and consider the linear function class
F = {f(x) = ⟨ψ(x), θ⟩ : ||θ||2 ≤ B, θ ∈ Rp}. Note that if p = 1 it’s a linear regression! Note
that it is linear in the parameter θ, not necessarily in X! This should always be the first class
we consider.

Rn(F) = EXi,εi

[
sup

||θ||2≤B

∣∣∣∣∣ 1n
n∑
i=1

εi⟨ψ(Xi), θ⟩

∣∣∣∣∣
]

= EXi,εi

[
sup

||θ||2≤B

∣∣∣∣∣ 1n
〈

n∑
i=1

εiψ(Xi), θ

〉∣∣∣∣∣
]
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= EXi,εi

[∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

εiψ(Xi)

∣∣∣∣∣
∣∣∣∣∣
2

]
·B (ℓ2 − ℓ2 dual)

≤ EXi,εi

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

εiψ(Xi)

∣∣∣∣∣
∣∣∣∣∣
2

2

 1
2

·B (Jensen’s)

= EXi,εi

[
1

n2

n∑
i,j=1

εiεj⟨ψ(Xi), ψ(Xj)⟩

] 1
2

·B

= EXi,εi

[
1

n2

n∑
i=1

ε2i ||ψ(Xi)||22

] 1
2

·B ( E[εiεj] = 0, i ̸= j))

=
B√
n
E[||ψ(X)||22]1/2

In this example, when B is large or when the expected norm of ψ is large, the Rademacher
complexity is large. Whereas it gets lower as n increases. This aligns with our intuition for
what makes F more complex. This is always true for classes of linear functions. ♣

The reason we introduce Rademacher complexity is because we can show that the supremum
of an empirical processes - ||Pn−P||F in our notation - is almost equivalent to the Rademacher
complexity. Moreover, we can also show ways of bounding the Rademacher complexity. This
will give us a technique to bound ||Pn − P||F , which is the object we care about. We start
with showing the near equivalence of ||Pn − P||F and Rn(F), then we will show how Rn(F)
provides bounds to ||Pn − P||F .

2.3.1 Upper and Lower Bounding E ∥Pn − P∥F by Rn(F)

In what follows we define the useful quantity

∥Sn∥F = sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif (Xi)

∣∣∣∣∣
and the recentered function class

F = {f − EX [f(X)], f ∈ F}.

Note. Note that

EX,ε [∥Sn∥F ] = EX,ε

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif (Xi)

∣∣∣∣∣
]
=: Rn(F)

and
∥Pn − P∥F = ∥Pn − P∥F
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because

∥Pn − P∥F := sup
g∈F

∣∣∣∣∣ 1n
n∑
i=1

g(Xi)− E[g(Xi)]

∣∣∣∣∣
= sup

(f−E f)∈F

∣∣∣∣∣ 1n
n∑
i=1

[f(Xi)− E[f(Xi)]]− E[f(Xi)− E[f(Xi)]]

∣∣∣∣∣
= sup

f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(Xi)]

∣∣∣∣∣ =: ∥Pn − P∥F .

♦

Lemma 3. Let Φ(·) be a convex non-decreasing function. Then

sup
f∈F

Φ(E[|f(X)|]) ≤ E[Φ(sup
f∈F

|f(X)|)].

Proof. First of all, note that |f(X)| ≤ |f(X)| a.s. ∀ f ∈ F , thus a fortiori |f(X)| ≤ supf∈F |f(X)| a.s. Then,
taking expectations on both sides we get E[|f(X)|] ≤ E[supf∈F |f(X)|] which also holds for any f ∈ F ,
therefore

sup
f∈F

E[|f(X)|] ≤ E[sup
f∈F

|f(X)|].

Since Φ(·) is a non-decreasing function we get

Φ(sup
f∈F

E[|f(X)|]) ≤ Φ(E[sup
f∈F

|f(X)|]).

Moreover, since it is non-decreasing we can swap it with the sup on the LHS and since it is convex we can
use Jensen’s inequality on the RHS to swap it with the expectation and get

sup
f∈F

Φ(E[|f(X)|]) ≤ E[Φ(sup
f∈F

|f(X)|)].

■

Note. The lemma above is a fancier version of the idea that the maximum of a sum can’t
exceed the sum of the maxima, simply because the second one “has more degrees of freedom/-
control variables”. ♦

The next proposition gives an upper and a lower bound for ∥Pn − P∥F .

Proposition 29. For any convex non-decreasing function Φ : R → R, we have

EX,ε
[
Φ

(
1

2
∥Sn∥F̄

)]
(a)

≤ EX [Φ (∥Pn − P∥F)]
(b)

≤ EX,ε [Φ (2 ∥Sn∥F)] .

Note. When applied with the convex non-decreasing function Φ(t) = t, the above proposition
gives yields the inequalities

1

2
Rn(F) =

1

2
EX,ε ∥Sn∥F ≤ EX [∥Pn − P∥F ] ≤ 2EX,ε ∥Sn∥F = 2Rn(F).
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Therefore the expected value of our empirical process is upper and lower bounded by the same
object (up to a constant) which turns out to be the Rademacher complexity of the indexing
class of functions.

The lower bound must involve F , whilst the upper bound can involve either F or F . For the
upper bound we can also have ∥Pn − P∥F = ∥Pn − P∥F̄ ≤ 2Rn(F). ♦

Proof. Beginning with bound (b). Let Yi be an independent copy of Xi. We have

EX [Φ (∥Pn − P∥F )] := EX

[
Φ

(
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f (Xi)− EY [f (Yi)]

∣∣∣∣∣
)]

(i)

≤ EX,Y

[
Φ

(
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f (Xi)− f (Yi)

∣∣∣∣∣
)]

(ii)
= EX,Y,ε

[
Φ

(
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

εi {f (Xi)− f (Yi)}

∣∣∣∣∣
)]

(iii)

≤ EX,Y,ε

[
Φ

(
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

εif (Xi)

∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
i=1

εif (Yi)

∣∣∣∣∣
)]

(iv)

≤ 1

2
EX,ε

[
Φ

(
2 sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

εif (Xi)

∣∣∣∣∣
)]

+
1

2
EY,ε

[
Φ

(
2 sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

εif (Yi)

∣∣∣∣∣
)]

(v)
= EX,ε

[
Φ

(
2 sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

εif (Xi)

∣∣∣∣∣
)]

= EX,ε [Φ (2 ∥Sn∥F )] = Rn(F).

where inequality (i) follows from Jensen’s inequality to bring EY [·] out of the absolute value and then applies
the previous lemma to Φ(supEY [|h(X)|]; equality (ii) is from the symmetrization trick, which relies on the
distribution of f (Xi) − f (Yi) being symmetric because Xi∈[n] and Yi∈[n] are iid; step (iii) follows by the
triangle inequality; step (iv) follows from Jensen’s inequality and the convexity of Φ; step (v) follows since
X and Y are i.i.d. samples.

Similarly, turning to the bound (a), we need to start with the demeaned class of functions F because we need
the expectation to pop out at the beginning of the proof. Thus

EX,ε

[
Φ

(
1

2
∥Sn∥F̄

)]
= EX,ε

[
Φ

(
1

2
sup
f∈F

| 1
n

n∑
i=1

εi {f (Xi)− EYi
[f (Yi)]}

)]
(i)

≤ EX,Y,ε

[
Φ

(
1

2
sup
f∈F

| 1
n

n∑
i=1

εi {f (Xi)− f (Yi)}

)]
(ii)
= EX,Y

[
Φ

(
1

2
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

{f (Xi)− E[Xi] + E[Yi]− f (Yi)}

∣∣∣∣∣
)]

(iii)

≤ EX,Y

[
Φ

(
1

2
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f (Xi)− E[f(Xi)]

∣∣∣∣∣+ 1

2
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f (Yi)− E[f(Yi)]

∣∣∣∣∣
)]

(iv)

≤ 1

2
EX

[
Φ

(
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

{f (Xi)− E[f(Xi)]}

∣∣∣∣∣
)]

+
1

2
EY

[
Φ

(
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

{f (Yi)− E[f(Yi)]}

∣∣∣∣∣
)]

= EX [Φ (∥Pn − P∥F )]
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where inequality (i) and (iv) follows from Jensen’s inequality; equality (ii) from the symmetric distribution of
f (Xi)−f (Yi) and adding and subtracting the same quantity; inequality (iii) follows from triangle inequality.

■

If we now recall that ∥Pn − P∥F is a random variable, then we can simply use the results we
obtained in the previous section to characterize its concentration.

Theorem 2 (Concentration of ∥Pn − P∥F). Suppose ∀f ∈ F , ∥f∥∞ ≤ b, i.e., the function
class is uniformly bounded. Then with probability 1− δ,

1

2
Rn(F)− b

√
2 log(2/δ)

n
≤ ∥Pn − P∥F ≤ 2Rn(F) + b

√
2 log(2/δ)

n

Note. The theorem shows that if Rn(F) = o(1), as n → ∞, then ∥Pn − P∥F
P→ 0. To have

almost sure convergence we need summability of the bounds P(∥Pn − P∥F ≥ t) ≤ δ(n, t) in
order to apply Borel-Cantelli. ♦

Proof. First, we show that the random variable ∥Pn − P∥F has the bounded difference property with coef-
ficients

(
2b
n , · · · ,

2b
n

)
. Recall that ∥Pn − P∥F = ∥Pn − P∥F , so we work with the latter to simplify things.

Then, pick f̄ , h̄ ∈ F and perturb the first component of x1:n∣∣∣∣∣ 1n
n∑

i=1

f̄ (xi)

∣∣∣∣∣− sup
h∈F

∣∣∣∣∣ 1n
n∑

i=1

h̄ (yi)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

f̄ (xi)

∣∣∣∣∣−
∣∣∣∣∣ 1n

n∑
i=1

f̄ (yi)

∣∣∣∣∣
≤ 1

n

∣∣f̄ (x1)− f̄ (y1)
∣∣ ≤ 2b

n
.

The function ∥Pn − P∥F is invariant to permutations of x, thus we conclude that such function has the
bounded difference property with coefficients ( 2bn , · · · ,

2b
n ).

Therefore, by the bounded difference inequality (Proposition 19), we have that ∥Pn − P∥F ∼ sG(2b/
√
n) and

thus with probability 1− δ we have that

|∥Pn − P∥F − E [∥Pn − P∥F ]| ≤ b

√
2 log(2/δ)

n
.

Applying Proposition 29, with Φ(·) equal to the identity function we conclude the proof. ■

Proposition 30. For any distribution P and any function class F ,

E[||Pn − P||F ] ≤ 2Rn(F).

Proof. Just apply Proposition 29 with F by noting that F = F . ■
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3 Bounding the Rademacher Complexity

In this section we will see various techniques to bound the Rademacher complexity. In turn,
this is useful to bound the supremum of empirical processes.

3.1 Bounds of Rn(F) via Maximal Inequality

Lemma 4 (Maximal inequality). Suppose Θ is finite, if ∀ θ ∈ Θ, Xθ ∼ sG(σ) and mean-zero,
we have

E [maxθ∈ΘXθ] ≤
√

2σ2 log |Θ|

where |Θ| is the cardinality of set Θ.

However when |Θ| = ∞, this inequality no longer holds. In this case, we want to apply some
structure to reduce to the maximal inequality case. For example, we will learn the metric
entropy method in the next chapter, where we will approximate the infinite set Θ by a finite
set Θε where |Θε| <∞ and supθ∈Θε

Xθ → supθ∈ΘXθ as ε→ 0.

In order to apply maximal inequality, we need to transform our (potentially infinite) function
class into a class with finite cardinality.

First, note the following useful fact. We defined

F(x1:n) ≡ {(f(x1), . . . , f(xn) : f ∈ F} ⊆ Rn,

which allows us to rewrite

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(xi)

∣∣∣∣∣ = sup
v∈F(x1:n)

|⟨ε, v⟩|/n.

Therefore

Rn(F) = EX,ε

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif (Xi)

∣∣∣∣∣
]

= EX

[
Eε

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif (Xi)

∣∣∣∣∣ | X1:n

]]

= EX

[
Eε

[
sup

v∈F(X1:n)

∣∣∣∣ 1n⟨ε, v⟩
∣∣∣∣ | X1:n

]]

≤ sup
x1:n∈suppP

Eε

[
sup

v∈F(x1:n)

|⟨ε, v⟩/n|

]
.

In the last step we gain tractability because we reduced the problem from involving a poten-
tially infinite class F to a possibly finite one, i.e. F(x1:n), but we lose information about the
form of P. However, we will show that in many cases the loss of information is not so large.

3 BOUNDING THE RADEMACHER COMPLEXITY



3.1 Bounds of Rn(F) via Maximal Inequality 45

Example 25. Sometimes |F| = ∞ but |F (x1:n)| < ∞. For example, consider the function
class F = {1{· ≤ t} : t ∈ R}. It’s clear that |F| = ∞. Without loss of generality, we assume
x1 < x2 < · · · < xn. Then we directly get

F (x1:n) = {(1 {x1 ≤ t} ,1 (x2 ≤ t) , . . .1 {xn ≤ t}) : t ∈ R}
= {(0, 0, . . . 0), (1, 0, . . . 0), (1, 1, 0, . . . 0), . . . (1, 1, . . . , 1)}.

This shows |F (x1:n) | = n+ 1,∀x1:n ∈ Rn. ♣

Lemma 5. Consider a class of functions F such that |F (x1:n)| <∞, then

Rn(F) ≤ sup
x1:n

DF (x1:n) ·

√
2 log

(
supx1:n |F (x1:n)|

)
n

Proof. We showed that

Rn(F) ≤ sup
x1:n∈suppP

Eε

[
sup

v∈F(x1:n)

|⟨ε, v⟩/n|

]
.

Let’s focus on the inner expectation. It’s known that εi ∼ sG(1). By independence of εis, for any v ∈ Rn,
we directly have E[⟨ε, v⟩] = 0 and 1

n

∑n
i=1 viεi ∼ sG(∥v∥2/n). To apply the maximal inequality we want the

sub-Gaussian parameter to be independent from v, thus we set

σn = sup
v∈F(x1:n)

1

n
∥v∥2 = sup

f∈F

1

n

√√√√ n∑
i=1

f (xi)
2
.

In this case we are taking the maximum over M sG (σn) random variables with mean 0. Hence, applying
maximal inequality, we have

Eε

[
sup

v∈F(x1:n)

∣∣∣∣ 1n ⟨ε, v⟩
∣∣∣∣
]
≤ σn

√
2 log (|F (x1:n)|) =

√
nσn︸ ︷︷ ︸

DF (x1:n)

√
2 log (|F (x1:n)|)

n
,

where DF (x1:n) = supf∈F
(
1
n

∣∣∑n
i=1 f(xi)

2
∣∣)1/2 is termed the ℓ2− radius of the set F(x1:n)/

√
n. Taking the

sup on both sides of the inequality gives the desired result. ■

Example 26. Consider the function class F = {1{x ≤ t} : t ∈ R}. We already established

that in this case supx1:n |F (x1:n)| ≤ n+1. Besides, supx1:n DF (x1:n) = supf∈F

√∑n
i=1 1

2

n
= 1.

Therefore,

Rn(F) ≤
√

2 log(n+ 1)

n
.

By Proposition 29 and Hoeffding’s inequality for bounded random variables we also get that
with probability 1− δ

∥Pn − P∥F = sup
t

∣∣∣∣∣ 1n
n∑
i=1

1(Xi ≤ t)− F (t)

∣∣∣∣∣ ≲ 2

√
2 log(n+ 1)

n
+

√
log(2/δ)

n
.

This example gives a proof of the Glivenko-Cantelli Theorem. ♣
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3.2 Bounds of Rn(F) via Polynomial Discrimination

When we look at the upper bound for Rn(F)

∆ := sup
x1:n

DF (x1:n)

√
1

n
2 log

(
sup
x1:n

|F (x1:n)|
)
, DF (x1:n) = sup

f∈F

(
1

n

∣∣∣∣∣
n∑
i=1

f(xi)
2

∣∣∣∣∣
)1/2

,

we notice that DF (x1:n) is typically bounded, e.g. it is O(1) when f are bounded. We then

want to have
√

2 log(|F(x1:n)|)
n

→ 0 as n→ ∞ to ensure that Rn(F) = o(1). We will accomplish

this by controlling the structure of F so that we can manage the cardinality of F(x1:n).

In what follows we restrict our attention to F ⊆ {f : x→ {±1}}, then |F (x1:n)| ≤ 2n. This
is because F ⊆ {±1}n (note that we distinguish elements in F by their images!). This family
of functions is useful in ML when doing classification.

In this case, we have two frequent behaviors of |F (x1:n)|.

a) If |F (x1:n)| ≲ (n+ 1)d ≲ O
(
nd
)

Rn(F) ≲ ∆ = O

(√
d log n

n

)
. (parametric rate)

b) If |F (x1:n)| ≲ O (cn)

Rn(F) ≲ ∆ = O

(√
n log c

n

)
= O(

√
log c). (exponential rate)

This latter bound is not great. This is because Rn(F) has ∥f∥∞ as a trivial bound. Indeed
if we are dealing with functions such that ∥f∥∞ = M < ∞, then R(F) ≤ M <

√
log c for

some c and M .

This gives us an intuition that we need to restrict |F (x1:n)| to have at most polynomial
growth in n and avoid it being exponential in n

Definition 16 (Polynomial discrimination). A class F of binary-valued functions with do-
main X has polynomial discrimination of order ν ≥ 1, i.e. F ∈ PD(ν), if

∀n ∈ N, ∀x1:n ∈ X n, |F (x1:n) | ≤ (n+ 1)ν .

Lemma 6. Suppose that F ∈ PD(ν). Then for all positive integers n and any collection of
points x1:n = (x1, . . . , xn),

Rn(F) ≤ sup
x1:n

DF (x1:n)

√
2ν log(n+ 1)

n
,

where D (x1:n) := supf∈F

√∑n
i=1 f

2(xi)

n
is the ℓ2-radius of the set F (x1:n) /

√
n.
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Proof. Direct application of Lemma 5. ■

Note. Any bounded function class with polynomial discrimination is Glivenko–Cantelli. This
follows from the fact that ∥f∥∞ ≤ b implies supx1:n DF (x1:n) ≤ b. Then by Theorem 2 we
conclude that ∥Pn − P∥F ≤ o(1) with probability 1− o(1). ♦

Example 27. Some PD and non-PD classes:

1) If F =
{
⟨ψ(x), θ⟩+ b : θ ∈ Rd, b ∈ R

}
, then |F (x1:n)| = +∞.

2) If F =
{
1{⟨ψ(x), θ⟩ ≥ b} : θ ∈ Rd, b ∈ R

}
, then F is PD(d+ 1). ♣

3.3 Bounds of Rn(F) via the Vapnik–Chervonenkis dimension

In certain cases, we can verify by direct calculation that a given function class has polynomial
discrimination. More broadly, it is of interest to develop techniques for certifying this property
in a less laborious manner. The theory of Vapnik–Chervonenkis (VC) dimension provides
one such class of techniques.

In particular, we will show that if a function class F has “VC dimension ν”, then it is PD(ν),

and by Lemma 6 we know Rn(F) ≲
√

ν log(n+1)
n

.

Definition 17 (Shattering). Given a function class F ⊆ {f : X → {0, 1}}, we say x1:n is
shattered by F if |F(x1:n)| = 2n.

Definition 18 (VC Dimension). The VC dimension of F , denoted ν(F) is the largest positive
integer n such that there exist some collection of points x1:n that is shattered by F .

Example 28. We now see three examples:

1. F = {1(· ≤ t) : t ∈ R}. We claim that ν(F) = 1. To see this

• Let n = 1. Then F(x1) = {0, 1}, so |F(x1)| = 2 = 21.

• Let n = 2. Then F(x1:2) = {(0, 0), (1, 0), (1, 1)}, so |F(x1:2)| ≤ 3 < 22. This is
because it is not possible to get (0, 1) and (1, 0) for the same collection x1:2 given
the shape of the functions in F .

Therefore ν(F) = 1, which is the largest integer for which we can find a collection of
points such that |F(x1:n)| = 2n.

2. F = {1(s ≤ · ≤ t) : s < t ∈ R}. We claim that ν(F) = 2. To see this

• Let n = 1. Then F(x1) = {0, 1}, so |F(x1)| = 2 = 21.

• Let n = 2. Then F(x1:2) = {(0, 0), (1, 0), (0, 1), (1, 1)}, so |F(x1:2)| ≤ 4 = 22.

• Let n = 3. Then at most F(x1:3) = 7 < 23.

This is because it is not possible to get (1, 1, 0), (1, 0, 1), and (0, 1, 1) for the same
collection x1:3 given the shape of the functions in F .
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3. Example 4.21 in Wainwright (2019). Suppose ϕ1, · · · , ϕp : X → R are some feature
functions and let

F =

{
1

(
p∑
i=1

aiϕi(x) ≤ b

)
: ai, b ∈ R

}
.

Then v(F) ≤ p+ 1.

♣

Note. In general, if a function class F can be linearly parametrized with k parameters, then
ν(F) = k. This is because the parameters directly control the VC dimension. If the function
class is not linear, we typically don’t use the VC dimension to upper bound the Rademacher
complexity. ♦

In the above definition, we naturally have, ∀n > v(F),

sup
x1:n

|F(x1:n)| ≤ 2n − 1.

However, we actually have a much better upper bound when n > v(F) given as follows:

Proposition 31 (Vapnik and Chervonenkis (1971), Sauer (1972), Shelah (1972)). Let F be
a function class with VC dimension ν. If n > ν, then

sup
x1:n

|F(x1:n)| ≤
ν∑
i=1

(
n

i

)
≤ min

{
(n+ 1)ν ,

(en
ν

)ν}
.

Note (PD and V C). Note that if F ∈ V C(ν), then by Proposition 31 we immediately have
that F ∈ PD(ν). Thus we can apply Lemma 6 and get

Rn(F) ≲

√
2ν log(n+ 1)

n
.

♦

Example 29. Let Xi∈[n]
iid∼ P. Consider the class of functions

F =

{
1

(
p∑
i=1

aiϕi(x) ≤ b

)
: ai, b ∈ R

}
.

Then with probability 1− δ

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f (Xi)− E[f(X)]

∣∣∣∣∣ ≤ C

√
(p+ 1) log(n+ 1)

n
+ k

√
log(2/δ)

n
,

where the bound on the expectation of the empirical process comes from Proposition 6 and
the concentration part comes from Hoeffding’s inequality for bounded random variables. This
bound can be sharpened by removing the log(n+ 1). ♣
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3.4 Bounds of Rn(F) via Metric Entropy

This is yet another method to upper bound Rn(F) Given Xθ ∼ sG(σ),∀ θ ∈ T , we hope to
give an upper bound of E[supθ∈T Xθ] even when |T | = ∞. The idea is to construct a set Tε
that approximates T and it has finite cardinality, i.e. |Tε| <∞. Formally,

∀ θ ∈ T ,∃ θ′ ∈ Tε s.t. ρ(θ, θ′) ≤ ε.

For any Tε ⊆ T , we have

E[sup
θ∈T

Xθ] ≤ E[ sup
θ′∈Tε

Xθ′ ]︸ ︷︷ ︸
σ
√

log |Tε|

+E[ sup
θ∈T ,
θ′∈Tε,

ρ(θ,θ′)≤ε

(Xθ −Xθ′)]

︸ ︷︷ ︸
L(ε)

,

so there is a trade-off in ε. If ε is smaller, Tε gets finer and it cardinality increases, but the
other terms gets smaller as ρ(θ, θ′) shrinks with ε. Then the question is, given T and a metric
ρ on T , how to find Tε and bound |Tε|? This leads to the next subsection.

Definition 19 (Distance). We say (T , ρ) is a metric space, if ρ : T × T → R satisfies all
the following conditions:

• (Non-negativity) ρ(θ, θ′) ≥ 0 ∀ θ, θ′ ∈ T , with ρ(θ, θ′) = 0 ⇐⇒ θ = θ′.

• (Symmetry) ρ(θ, θ′) = ρ(θ, θ),∀ θ, θ′ ∈ T .

• (Triangle inequality) ρ(θ, θ′) ≤ ρ(θ, θ′′) + ρ(θ′, θ′′), ∀ θ, θ′, θ′′ ∈ T .

Example 30. A metric space can have elements that are finite-dimensional, e.g. T = Rd.
If Rd is equipped with either the Euclidean norm ρ(θ, θ′) = ∥θ − θ′∥2 or the Hamming norm
ρ(θ, θ′) = d−1

∑d
i=1 1(θi ̸= θ′i), then it is a metric space.

However, a metric space can also be a space of functions, for example the space of square-
integrable functions with respect to the measure µ ∈ P([0, 1]), typically defined as

T = L2(µ, [0, 1]) = {f : [0, 1] → R,
∫
f 2(x)µ( dx) <∞}.

It is a metric space when it is equipped with the L2(µ) norm

ρ(f, g) = ∥f − g∥L2(µ) =

(∫
(f(x)− g(x))2µ( dx)

) 1
2

or the L∞−norm
ρ(f, g) = ∥f − g∥∞ = ess sup

x∈[0,1]
|f(x)− g(x)|

or the L2(Pn) norm

ρ(f, g) = ∥f − g∥L2(Pn) =

(
1

n

n∑
i=1

(f(x)− g(x))2

)1/2

.

♣
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Definition 20 (Covering set). The set Tε = {θ1, · · · , θN} ⊆ T is called a ε-cover of the set
T with metric ρ, if ∀ θ ∈ T , ∃ θ′ ∈ Tε, s.t. ρ(θ, θ′) ≤ ε. The ε-covering number of (T , ρ) is
defined as:

N(ε; T , ρ) = inf{n ∈ N : |Tε| = n, Tε is ε-covering of T }.

Finally logN(ε; T , ρ) is the metric entropy of T with metric ρ of size ε.

Note. The covering number is the cardinality of the smallest set of points such that the union
of the balls of radius ε centered on such points cover T . Note that by definition of ε−cover
we get

T ⊆
⋃
θ∈Tε

B(θ, ε).

We can see that the metric entropy of a set increases as ε decreases or as the size increases.
♦

Example 31 (Parametric vs Non-parametric). For parametric families

logN(ε) ≍ d log(1 + 1/ε),

whilst for non-parametric families

logN(ε) ≍ c

εα
, α > 0.

In the first case as ε gets smaller the entropy increases with logarithmic rate, whereas in the
non-parametric case it blows up quickly. ♣

Example 32. Consider the set T = [−1, 1] and the metric ρ(θ, θ′) = |θ−θ′|, then N(ε; T , ρ) ≤
1
ε
+1. For T = [−1, 1]d and ρ(θ, θ′) = ∥θ−θ′∥∞, we have N(ε;T, ρ) ≤ (1

ε
+1)d. The intuition

for the latter is how to cover a square with a grid of smaller squares of side 2ε. ♣

It is not always the case we can use a constructive approach. If the set lives in an Eucledian
space there is a general approach to upper and lower bound the covering number.

Definition 21 (ε-packing). A set T̃ε = {θ1, · · · , θM} ⊆ T is an ε-packing of T if ∀ θ, θ′ ∈
T̃ε, θ ̸= θ′, ρ(θ, θ′) > ε. The ε-packing number of T is defined as

M(ε; T , ρ) = sup{M : |T̃ε| =, T̃ε is ε-packing of T }.

Note. Note that ∀ θ ̸= θ′, Bρ(θ, ε2) ∩ Bρ(θ′, ε2) = ∅. So the points in T̃ε are such that ♦

Lemma 7. Let T ⊆ Rn. For any ε > 0, we have

M(2ε; T , ρ)
(i)

≤ N(ε; T , ρ)
(ii)

≤ M(ε; T , ρ).

Proof. (ii) a maximal ε-packing gives an ε-covering. To see this suppose that T̃ε is a maximal ε−packing

of T . Being maximal means that no other point can be added to T̃ε without violating the definition of
ε−packing. Then, for each point θ in T \ T̃ε there exists a point θ′ in T̃ε such that ρ(θ, θ′) < ε. Hence T̃ε is
also a ε−cover.
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Figure 1: (a): δ-covering; (b): δ-packing.

(i) Suppose T admits a 2ε-packing with size M , all ε-covering should have size at least M . This is because
a 2ε packing does not cover T and all its points have non-intersecting neighborhoods of radius ε, therefore
all the points in T are distant at least 2ε. As such to construct an ε−cover of T we need at least M points
(equality holds on the real line for example). ■

Now we give the lower and upper bound of the covering and packing number.

Lemma 8. Let T ⊆ Rn. For any ε > 0, we have

Vol(T )

Vol(Bρ(ε))
(i)

≤ N(ε; T , ρ) ≤M(ε; T , ρ)
(ii)

≤ Vol(T + Bρ(ε/2))
Vol(Bρ(ε/2))

,

where T + Bρ(ε/2) = {a+ b : a ∈ T , b ∈ Bρ(ε/2)}.

Proof. The second inequality is directly obtained by Lemma 7. Now we prove the first and the last inequality.

(i) Since T =
⋃

θ∈Tε
Bρ(θ, ε), then

Vol(T ) ≤ Vol

( ⋃
θ∈Tε

Bρ(θ, ε)

)
≤
∑
θ∈Tε

Bρ(θ, ε) = |Tε| ·Vol(Bρ(ε)),

where the last equality uses the fact that ρ is translation invariant.

(ii) Since
⋃

θ∈T̃ε
Bρ(θ, ε/2) ⊆ T + Bρ(ε/2), we have

∑
θ∈T̃ε

Bρ(θ, ε/2) = Vol

 ⋃
θ∈T̃ε

Bρ(θ, ε/2)

 ≤ Vol (T + Bρ(ε/2)) .

The fact that
|
∑
θ∈T̃ε

Bρ(θ, ε/2) = T̃ε ·Vol(Bρ(ε/2))

concludes the proof.
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■

Example 33. In this example, let ρ = ∥ · ∥p, and T = Bp(1) = {x ∈ Rd : ∥x∥p ≤ 1}. Then

Vol(T ) = cd,p, Vol(Bp(ε)) = cd,pε
d, Vol(T +Bp(ε/2)) = Vol(Bp(1+ ε/2)) = cd,p(1+ ε/2)d,

where cd,p is a constant that only depends on d and p. By Lemma 8, we have

N(ε; T , ρ) ≤ Vol(T + Bp(ε/2))
Vol(Bp(ε/2))

=
(1 + ε/2)d

(ε/2)d
= (2/ε+ 1)d,

N(ε; T , ρ) ≥ Vol(Bp(1))
Vol(Bp(ε))

=
1d

εd
= (1/ε)d.

Therefore,

d log(1/ε) ≤ logN(ε; T , ρ) ≤ d log(2/ε+ 1).

♣

Proposition 32 (One-step Discretization Bound). Let (T , ρ) be a metric space, Tε be a

ε−cover of T , and let {Xθ, θ ∈ T }, Xθ
iid∼ sG(σ),E[Xθ] = 0. Then for all ε ≤ diam(T )

E[sup
θ∈T

|Xθ|] ≤ 2
√
σ2 logN(ε; T , ρ) + E[ sup

θ∈T ,
θ′∈Tε,

ρ(θ,θ′)≤ε

|Xθ −Xθ′ |].

Proof. Note that
sup
θ∈T

Xθ ≤ sup
θ∈Tε

Xθ + sup
θ∈T ,
θ′∈Tε,

ρ(θ,θ′)≤ε

(Xθ −Xθ′)

and then take expectations on both sides. The first term can now be upper bounded by the maximal inequality
and this concludes the proof. ■

We now give the same statement but in the version offered in Wainwright (2019).

Definition 22 (SG process). {Xθ}θ∈T is a sub-Gaussian process with ρ on T if for any
θ, θ′ ∈ T , Xθ −Xθ′ is SG(ρ(θ, θ′)), i.e.,

E[eλ(Xθ−Xθ′ )] ≤ eλ
2ρ(θ,θ′)2/2, ∀λ ∈ R .

Example 34. Let T ⊆ Rd, ρ = ∥ · ∥2, and define Xθ = ⟨w, θ⟩, where w ∼ Nd(0, Id). Then
Xθ −Xθ′ = ⟨θ − θ′, w⟩ ∼ N(0, ∥θ − θ′∥22) ∼ sG(∥θ − θ′∥2). ♣

Proposition 33 (One-step Discretization Bound II). Let (T , ρ) be a metric space, Tε be
a ε−cover of T , and let {Xθ, θ ∈ T } be a mean-zero sub-Gaussian process. Then for all
ε ≤ diam(T ) such that N(ε; T , ρ) ≥ 10

E[ sup
θ,θ̃∈T

(Xθ −Xθ̃)] ≤ 6
√

diam(T )2 logN(ε; T , ρ) + 2E[ sup
θ,θ̃∈T ,
ρ(θ,θ′)≤ε

(Xθ −Xθ′)].
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Example 35 (Gaussian Complexity). In this example we show how to bound G(B2(1)) by

one-step discretization. Consider wi
iid∼ N(0, 1), then ⟨w, θ⟩ ∼ SG(∥θ∥2). We can show that

the Gaussian complexity of B2(1) has order

G(B2(1)) = E

[
sup

θ∈B2(1)

⟨w, θ⟩

]
= E[∥w∥2] ≈

√
d.

Now we will show the above result by the one-step discretization method. First, by 32, we can
obtain that

G(B2(1)) ≤ sup
θ∈B2(1)

∥θ∥2 ·
√

log(N(ε;B2(1), ∥ · ∥2)) + E

[
sup

∥θ−θ′∥2≤ε
|⟨w, θ⟩ − ⟨w, θ′⟩|

]

≤
√

log(N(ε;B2(1), ∥ · ∥2)) + E

[
sup

∥θ−θ′∥2≤ε
|⟨w, θ⟩ − ⟨w, θ′⟩|

]

≤
√
d log(2/ε+ 1) + E

[
sup

∥θ−θ′∥2≤ε
|⟨w, θ⟩ − ⟨w, θ′⟩|

]
.

Also,

E

[
sup

∥θ−θ′∥2≤ε
|⟨w, θ⟩ − ⟨w, θ′⟩|

]
= E

[
sup

∥θ−θ′∥2≤ε
|⟨w, θ − θ′⟩|

]

= E

[
sup

∥r∥2≤ε
|⟨w, r⟩|

]
= εE

[
sup

∥r∥2≤1

|⟨w, r⟩|

]
= εG(B2(1)).

Therefore,

G(B2(1)) ≤
√
d log(2/ε+ 1) + εG(B2(1)) =⇒ G(B2(1)) ≤

1

1− ε

√
d log(2/ε+ 1).

Since ε was arbitrary, we can choose it and fix it to 1/2 to get

G(B2(1)) ≤ 2
√
d log(5) ≍

√
d.

♣

Example 36 (Operator Norm). If Wij
iid∼ N(0, 1) and W ∈ Rn×d, then

E[∥W∥op] ≤
√
n+

√
d

♣

Example 37 (Lipschitz Functions, Wainwright 5.6). Consider FL = {g : [0, 1] → R : g(0) =
0, |g(y)− g(x)| ≤ L|y − x|}, then

logN(δ;FL, L
∞) ≍ L

δ
.
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Let’s now compute the Rademacher complexity of the class FL. First, note that each εiXi is
mean-zero and sub-Gaussian. The reason is that εi are mean-zero, thus by iterated expecta-
tions we get that εiXi is mean-zero too. Moreover, εiXi are absolutely bounded by L because
f are L-Lipschitz on the interval [0, 1]

Rn(FL) = EXi,εi

[
sup
f∈FL

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣
]

= E
[
sup
f∈FL

|Xf |
]

(Xf ∼ sG(L/
√
n))

≲
L√
n

√
logN(δ;FL, L∞) + E

 sup
g,f∈FL

∥f−g∥∞≤δ

∣∣∣∣∣ 1n
n∑
i=1

εi (f (xi)− g (xi))

∣∣∣∣∣


(One-step discretization)

≲
L√
n

√
L

δ
+ δ

Again, δ was arbitrary, thus we can optimize over it. For example, say L = 1, then δ⋆ = n−1/3.
By rescaling everything by L (note the the Rademacher complexity is scalable), we get

Rn(FL) ≲
2L

n1/3
.

♣

3.5 Bounds of Rn(F) via Chaining

In this section, we introduce the chaining method to obtain a tighter control of discretization
error in Proposition 32 and have thus a tighter bound of E[supθ∈T |Xθ|]. To formally establish
our result, we need to recall the definition of sub-Gaussian process.

Definition 23 (SG process). {Xθ}θ∈T is a sub-Gaussian process with ρ on T if for any
θ, θ′ ∈ T , Xθ −Xθ′ is SG(ρ(θ, θ′)), i.e.,

E[eλ(Xθ−Xθ′ )] ≤ eλ
2ρ(θ,θ′)2/2, ∀λ ∈ R .

Note. The requirement of {Xθ}θ∈T being a sub-Gaussian process is neither stronger nor
weaker than asking that each Xθ is sub-Gaussian. However, the former implies that each
Xθ −Xθ′ ∼ sG (ρ(θ, θ′)). ♦

Our goal is to consider the following bound

E
[
sup
θ∈T

|Xθ|
]
≤ inf

ε

E
[
sup
θ∈Tε

|Xθ|
]
+ E

[
sup

ρ(θ,θ̃)≤ε
|Xθ −Xθ̃|

]
︸ ︷︷ ︸

discretization error
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and have a better control on the discretization error. Regarding the first one, we already
know how to control it via the maximal inequality.

Proposition 34 (Chaining Upper Bound). Let (T , ρ) be a metric space and let {Xθ, θ ∈ T }
be a mean-zero sub-Gaussian process sG(ρ(θ, θ′)) and let the diameter of T be defined as

D := supθ,θ̃∈T ρ(θ, θ̃). Then, ∀ ε ∈ [0, D]

E

[
sup
θ,θ̃∈T

(Xθ −Xθ̃)

]
≤ inf

ε≤D

[
2E

[
sup

ρ(r,r′)≤ε
(Xr −Xr′)

]
+ 32J(ε;D; T , ρ)

]
,

where J(ε;D; T , ρ) =
∫ D
ε

√
logN(u; T , ρ)du is defined as Dudley’s entropy integral.

Note. Typically the term 32J(ε;D; T , ρ) is much smaller than D
√
logN(ε; T , ρ) that we get

from the one-step discretization bound.

If you are interested in bounding E[supθXθ] you can still use this bound because

E[sup
θ∈T

Xθ] = sup
θ′∈T

E[sup
θ∈T

(Xθ − E[Xθ′ ])] ≤ E[ sup
θ,θ̃∈T

(Xθ −Xθ̃)],

where in the first equality we used the fact that Xθ are mean-zero, whilst in the equality we
just swapped the integration and the sup operator.

A similar bound -with different constants- can be obtained for E[supθ,θ̃∈T |Xθ −Xθ̃|] because
nothing would change in the proof. ♦

Proof. We start by constructing a sequence of finer and finer ε−covers of T . Let εm = D
2m form = 1, 2, . . . , L.

Let Um be a minimal εm-covering of T , then |Um| = N(εm; T , ρ). Also, define πm(θ) = argminβ∈Um
ρ(θ, β),

i.e., πm(θ) is the closest point in Um to θ. The picture below shows graphically some different covers under
the ρ∞−norm and πm(θ).
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The reason why we do this is because we want to use the {πm(θ), πm(θ̃)}Lm=1 to construct an interpolating

path that connects any two θ and θ̃.

By the triangle inequality,

|Xθ −Xθ̃| ≤ |Xθ −XπL(θ)|+
L−1∑
i=1

|Xπi+1(θ) −Xπi(θ)|+ |Xπ1(θ) −Xπ1(θ̃)
|+

L−1∑
i=1

|Xπi+1(θ̃)
−Xπi(θ̃)

|+ |XπL(θ̃) −Xθ̃|.

Then taking the sup over T and expectation yields

E

[
sup

θ,θ̃∈T

∣∣Xθ −Xθ̃

∣∣] ≤ E

[
sup

θ,θ̃∈T

∣∣∣Xπ1(θ) −Xπ1(θ̃)

∣∣∣]

+ 2

L−1∑
l=1

E
[
sup
θ∈T

∣∣Xπl+1(θ) −Xπl(θ)

∣∣]
+ 2E

[
sup
θ∈T

∣∣Xθ −XπL(θ)

∣∣] .
Let’s start with the first term E[supθ,θ̃∈T |Xπ1(θ) −Xπ1(θ̃)

|]. This might seem a term involving a supremum

over a set of infinite cardinality. However, since (π1(θ), π1(θ̃)) can take at most |U1|2 ≤ N(D/2; T , ρ)2 distinct
values and each term is sG(D) because the distances |Xπ1(θ)−Xπ1(θ̃)

| are bounded, we can apply the maximal

inequality. Therefore

E

[
sup

θ,θ̃∈T

∣∣∣Xπ1(θ) −Xπ1(θ̃)

∣∣∣] ≲ D
√
2 logN(D/2; T , ρ).

For the second terms E[supθ∈T |Xπl+1(θ) − Xπl(θ)|], since (πl+1(θ), πl(θ)) can take at most |Ul||Ul+1| ≤
N(D/2l+1; T , ρ)2 distinct values and each term is sG(D/2l), then by the maximal inequality,

E

[
sup

θ,θ̃∈T
|Xπ1(θ) −Xπ1(θ̃)

|

]
≲

D

2l−1

√
logN(D/2l; T , ρ).

Finally, we can’t use the same trick on the last term because the first term is not projected. However,

E
[
sup
θ∈T

|Xθ −XπL(θ)|
]
≤ E

[
sup

ρ(θ,θ̃)≤D/2L−1

|Xθ −Xθ̃|

]
.

Therefore, the final bound is

E

[
sup

θ,θ̃∈T
|Xθ −Xθ̃|

]
≤ 2E

[
sup

ρ(θ,θ̃)≤D/2L−1

|Xθ −Xθ̃|

]
+ c ·

L∑
l=1

D

2l

√
logN(D/2l−1; T , ρ)

≤ 2E

[
sup

ρ(θ,θ̃)≤D/2L
|Xθ −Xθ̃|

]
+ c

∫ D

D/2L

√
logN(u; T , ρ)du.

This holds for any L and we can take ε = D
2L

. ■

Example 38. Let’s revisit some examples to see the gains through the chaining argument.

G(B2(1)) = E[ sup
θ∈B2(1)

⟨w, θ⟩]

≤ inf
ε

{
εG(B2(1)) +

∫ 1

ε

√
logN(u;B2(1), ∥ · ∥2)du

}
3 BOUNDING THE RADEMACHER COMPLEXITY



3.6 Applications of the Chaining Method 57

≤ inf
ε

{∫ 1

0

√
d log(2/u+ 1)du

}
=

√
d

∫ 1

0

√
log(2/u+ 1)du ≍

√
d.

where the last equality arbitrarily fixes ε = 0. Note that the integrand is still integrable as the
function goes to −∞ as u→ 0 sufficiently slow.

The operator norm E[∥W∥op] ≍
√
n+ d.

For the class of functions FL = {g : [0, 1] → R : g(0) = 0, |g(y) − g(x)| ≤ L|y − x|} we get
that R(FL) ≍ cL√

n
.

In the previous case we got orders of
√
d,
√
n+

√
d, and 2L

n1/3 , respectively. ♣

Note. From the previous example it is clear that if the index set of the supremum process
is somehow parametric (first two examples), the chaining argument does not buy us much.
However, if the class is non-parametric then it yields much sharper bounds when compared
to the one-step discretization bound. ♦

3.6 Applications of the Chaining Method

In this section, we study the Rademacher complexity of the function class F ⊆ Lp(P) for
1 ≤ p ≤ ∞, where Lp(P) is the Lp space with respect to some probability measure P.
Let εi

iid∼ Unif({±1}) denote Rademacher random variables. Recall that the Rademacher
complexity of F is defined as

Rn(F) = Eεi,Xi

[
sup
f∈F

∣∣∣ 1
n

n∑
i=1

εif(Xi)
∣∣∣].

When the value of f is binary (such as with indicator functions), F(X1:n) is a finite set (of
cardinality at most 2n), and we can apply the VC dimension theory or use the maximal
inequality. For general function classes, we consider the metric entropy method. To apply
Proposition 34 successfully, in general, we have to:

• Define the metric ρ on the function space F of interest.

• Show that Xf is a sub-Gaussian process with respect to metric ρ.

• Find an upper bound for the covering number N(u;F , ρ).

• (Optional) Find an upper bound for the the discretization error.

3.6.1 Useful Metrics on the Function Space.

Definition 24 (L2(P) metric). For any f, g ∈ F , define

∥f − g∥2L2(P) =

∫
X
(f(x)− g(x))2P( dx).
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Definition 25 (L∞ metric). For any f, g ∈ F , define

∥f − g∥L∞ = sup
x∈X

|f(x)− g(x)|.

Definition 26 (L2(Pn) metric). Suppose Pn is the empirical measure with respect to X1:n.
For any f, g ∈ F , define

∥f − g∥2L2(Pn)
=

∫
X
(f(x)− g(x))2Pn( dx) =

1

n

n∑
i=1

(f(Xi)− g(Xi))
2.

Note. There are some remarks on the base measures in the above definitions. In Definition
24, P is the base measure, and in most cases, P refers to some probability measures. In
Definition 25, in general we don’t need to write down the base measure P, and we can assume
that the base measure is the Lebesgue measure. Definition 26 can be viewed as a special
case of Definition 24, with the empirical measure Pn = n−1

∑n
i=1 δXi

, where δ is the Dirac
measure. In Definition 26, we consider fixed X1:n, and if X1:n are random, ∥ · ∥L2(Pn) is a
random variable or a random function of {X1:n}. ♦

Lemma 9. The L2(Pn) metric is equivalent to ∥ · ∥2 on n−1/2F(X1:n) ⊆ Rn.

Proof. We defined

n−1/2F(X1:n) =
{ 1√

n
(f(X1), ..., f(Xn))

′ ∈ Rn : f ∈ F
}
,

for any f, g ∈ F , we have n−1/2f(X1:n), n
−1/2g(X1:n) ∈ n−1/2F(X1:n) and

∥n−1/2f(X1:n)− n−1/2g(X1:n)∥22 =
1

n

n∑
i=1

(f(Xi)− g(Xi))
2 = ∥f − g∥2L2(Pn)

.

■

Note. Lemma 9 provides another point of view of the L2(Pn) metric. Indeed, despite it being
a norm in the space F of functions, it is related to the ℓ2−norm in the Euclidean space. ♦

If we are dealing with a parametric function space, that is a class of functions were elements
are indexed by a parameter, then we can define another metric induced by the metric of its
parameter space.

Definition 27 (Metric on the parametric function space). Let F = {fθ : θ ∈ T ⊆ Rd} be
a function space parameterized by θ and supported in a metric space (T , ρ). The induced
metric ρ̃ on F is

ρ(fθ, fθ̃) = ρ̃(θ, θ̃).

Next, we discuss the relationships of the four metrics in Definitions 24, 25, 26, 27.

Lemma 10. For any base measure P and for any f, g ∈ F ,

∥f − g∥L2(P) ≤ ∥f − g∥L∞ .
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Proof. By definition,

∥f − g∥2L2(P) =

∫
X
(f(x)− g(x))2P(dx) ≤ sup

x∈X
(f(x)− g(x))2 = ∥f − g∥2L∞ ,

which implies the desired result. ■

Corollary 3. For any X1:n,

∥f − g∥L2(Pn) ≤ ∥f − g∥L∞ .

Lemma 11. For any parametric function space F = {fθ : θ ∈ T ⊆ Rd} with induced metric
ρ, suppose that there exists a function Γ such that for any x ∈ X ,

|fθ1(x)− fθ2(x)| ≤ Γ(x) · ρ(θ1, θ2).

Then, we have
∥fθ1 − fθ2∥L2(P) ≤ ∥Γ∥L2(P) · ρ(θ1, θ2),

and
∥fθ1 − fθ2∥L∞ ≤ ∥Γ∥L∞ · ρ(θ1, θ2).

Proof. By definition,

∥fθ1 − fθ2∥2L2(P) =

∫
X
(fθ1(x)− fθ2(x))

2P(dx) ≤
∫
X
Γ(x)2 · ρ(θ1, θ2)2P(dx) = ∥Γ∥2L2(P) · ρ(θ1, θ2)

2,

which implies the first inequality. The proof of the second inequality is similar:

∥fθ1 − fθ2∥L∞ = sup
x∈X

|fθ1(x)− fθ2(x)| ≤ sup
x∈X

|Γ(x)| · ρ(θ1, θ2) = ∥Γ∥L∞ · ρ(θ1, θ2).

■

The next example shows how we can bound a norm in the function space with a norm in the
Euclidean space.

Example 39. Consider the function class

F =
{
fθ(x) = 1− e−θx, x ∈ [0, 1] : θ ∈ [0, 1]

}
.

For fixed x ∈ [0, 1], if we view fθ(x) as a function of θ, then the first derivative is xe−θx,
which is upper bounded by x. This implies that

|fθ1(x)− fθ2(x)| ≤ x · |θ1 − θ2|.

By Lemma 11,
∥fθ1 − fθ2∥L2(P) ≤ ∥x∥L2(P) · |θ1 − θ2|,

and
∥fθ1 − fθ2∥L∞ ≤ |θ1 − θ2|.

♣

The relationship of the metrics lead to the relationship of covering numbers, according to
Lemma 12.
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Lemma 12. If ρ1, ρ2 are two metrics on T such that ρ1(θ1, θ2) ≤ ρ2(θ1, θ2) for any θ1, θ2 ∈ T ,
then we have

N(ε; T , ρ1) ≤ N(ε; T , ρ2).

Proof. Suppose Tε is an ε−cover under ρ2. Then it means that ∀ θ ∈ T ,∃ θ′ ∈ Tε : ρ2(θ, θ
′) ≤ ε.. Then, by

assumption, we get that ρ1(θ, θ
′) ≤ ρ2(θ, θ

′) ≤ ε, which shows that Tε is an ε−cover under ρ1 too. ■

Corollary 4.

N(ε;F , L2(Pn)) ≤ N(ε;F , L∞), and N(ε;F , L2(P)) ≤ N(ε;F , L∞).

If |fθ1(x)− fθ2(x)| ≤ Γ(x) · ρ(θ1, θ2), then

N(ε;F , L∞) ≤ N(ε; T , ∥Γ∥L∞ · ρ), and N(ε;F , L2(P)) ≤ N(ε; T , ∥Γ∥L2(P) · ρ).

Proof. (i) Consequence of Lemma 12 and Lemma 10. (ii) Consequence of Lemma 11 and Lemma 10. ■

3.6.2 Rademacher Complexity is a sub-Gaussian Process

We now check whether the Rademacher complexity is a sub-Gaussian process and under
which metric. We start with the empirical Rademacher complexity, treating the X1:n as
fixed.

Lemma 13. The empirical Rademacher complexity R(F(X1:n/n) is a sub-Gaussian process
with metric L2(Pn) or L∞.

Proof. Define Xf := n−1/2
∑n

i=1 εif(xi). Pick any f, g ∈ F ,

E
[
exp

{
λ(Xf −Xg)

}
| X1:n

]
= E

[
exp

{
n−1/2λ

n∑
i=1

εi(f(Xi)− g(Xi))
}
| X1:n

]
(definition of Xf and Xg)

=

n∏
i=1

E
[
exp

{
n−1/2λεi(f(Xi)− g(Xi))

}
| Xi

]
(by independence of εi)

≤
n∏

i=1

exp
{λ2
2n

(f(Xi)− g(Xi))
2
}

(by Hoeffding’s inequality)

= exp
{λ
2
· 1
n

n∑
i=1

(f(Xi)− g(Xi))
2
}
= exp

{λ
2
∥f − g∥2L2(Pn)

}
.

We conclude that (Xf )f∈F is a sub-Gaussian process with metric ∥ · ∥L2(Pn). Also, since

∥f − g∥2L2(Pn)
≤ ∥f − g∥2L∞ ,

(Xf )f∈F is a sub-Gaussian process with metric ∥ · ∥L∞ . ■

Proposition 35. Let Rn(F) = EX,ε
[
supf∈F

∣∣ 1
n

∑n
i=1 εif(Xi)

∣∣] . Then
E
[
∥Pn − P∥F

]
≲ Rn(F) ≲

DP√
n
sup
Q

∫ 1

0

√
logN(∥F∥Q · u;F , L2(Q)) du.
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and

sup
P

E
[
∥Pn − P∥F

]
≲ Rn(F) ≲ D∞ · inf

ε

[
ε+

1√
n

∫ 1

ε

√
logN(∥F∥∞ · u;F , L∞) du

]
,

where DP := supf∈F ∥f∥L2(P) and D∞ := supf∈F ∥f∥∞.

Note. There is nothing specific about the metric used in the two results above other than the
fact that they make the empirical Rademacher complexity a sub-Gaussian process.

In some cases it is not hard to upper bound the covering number of F , thus we resort to the
version

Rn(F) ≲
∥F∥Pn√

n

∫ 1

0

√
logN(∥F∥Pn · u;F , L2(Pn)) du,

which will be derived as an intermediate step in the proofs below. ♦

Proof. By the previous Lemma, we know that the empirical Rademacher complexity is a sub-Gaussian process
with metric L2(Pn). Therefore by Proposition 34 with ε = 0, we have

E
[
sup
f∈F

|Xf |
]
≲
∫ ∥F∥Pn

0

√
logN(u;F , L2(Pn)) du,

where ∥F∥Pn is defined as ∥F∥Pn := supf,g∈F ∥f − g∥L2(Pn). Therefore,

R(F(X1:n)/n) =
1√
n
E
[
sup
f∈F

|Xf |
]
≲

1√
n

∫ ∥F∥Pn

0

√
logN(u;F , L2(Pn)) du.

Since the covering number N(u;F , L2(Pn)) is not easy to compute, we want to find an upper bound of it:

R(F(X1:n)/n) ≲
1√
n

∫ ∥F∥Pn

0

√
logN(u;F , L2(Pn)) du

≲
∥F∥Pn√

n

∫ 1

0

√
logN(∥F∥Pn

· v;F , L2(Pn)) dv (u = ∥F∥Pn
· v)

≲
∥F∥Pn√

n
sup
Q

∫ 1

0

√
logN(∥F∥Q · u;F , L2(Q)) du

≲
∥F∥P√
n

sup
Q

∫ 1

0

√
logN(∥F∥Q · u;F , L2(Q)) du (∥F∥L2(Pn) ≤ ∥F∥L2(P))

where the supremum is over all the probability measures Q. By taking expectations on both sides

Rn(F) = E[R(F(X1:n)/
√
n)] ≲

∥F∥P√
n

sup
Q

∫ 1

0

√
logN(∥F∥Q · u;F , L2(Q)) du.

To get exactly the first result it is sufficient to note that ∥F∥P ≤ DP, because

∥F∥P = sup
f,g∈F

∫
X
(f(x)− g(x))2P( dx) ≤ 2 sup

f∈F

∫
X
f(x)2P( dx) = DP,

which is basically saying that the diameter of the set is not larger than twice the radius.

The other result can be obtained in a similar fashion by not imposing ε = 0 when applying the Chaining
bound with the L∞ norm, i.e.,

E
[
sup
f∈F

|Xf |
]
≲ inf

ε

{
E

[
sup

∥f−g∥∞≤ε

∣∣∣∣∣ 1n
n∑

i=1

εi(f(Xi)− g(Xi))

∣∣∣∣∣
]
+

∫ ∥F∥∞

ε

√
logN(u;F , L∞) du

}
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≲ inf
ε

{
ε+

∫ ∥F∥∞

ε

√
logN(u;F , L∞) du

}

= inf
ε

{
ε+ ∥F∥∞

∫ 1

ε/∥F∥∞

√
logN(v∥F∥∞;F , L∞) du

}
(u = v∥F∥∞)

= inf
ν

{
ν∥F∥∞ + ∥F∥∞

∫ 1

ν

√
logN(v∥F∥∞;F , L∞) du

}
(ν∥F∥∞ = ε)

= ∥F∥∞ inf
ε

{
ε+

∫ 1

ε

√
logN(v∥F∥∞;F , L∞) du

}
.

■

Example 40 (Parametric class). Consider the function class

F =
{
fθ(x) = 1− e−θx, x ∈ [0, 1], θ ∈ [0, 1]}.

We first need to compute the covering number

N(ε; [0, 1], | · |) ≤ 1

2ε
+ 1.

In a previous example we showed that ∥fθ1 − fθ2∥∞ ≤ |θ1 − θ2| which implies

N(ε;F , ∥ · ∥∞) ≤ N(ε; [0, 1], | · |).

Finally, since f ∈ F are bounded D∞ = 1. Thus applying the proposition above

Rn(F) ≲
D∞√
n

∫ 1

0

√
logN(∥F∥∞ · u;F , L∞) du

≲
1√
n

∫ 1

0

√
log

(
1 +

1

2u∥F∥∞

)
du ≲

c√
n
,

where the last equality follows from the fact that
∫ 1

0

√
log(1 + 1/x) dx < ∞. The one-step

discretization bound is looser in this case and will give a bound of order
√
log n

√
n.

Consider now the function

F =
{
fθ : x→ R : θ ∈ Bd2(1)

}
and suppose that it’s a class of Lipschitz functions

|fθ1(x)− fθ2(x)| ≤ ∥θ1 − θ2∥2 .

Then

Rn(F) ≲
1√
n

∫ 1

0

√
d log

(
1

n
+ 1

)
du ⩽

√
d

n
,

where we used the result that N(ε;Bd2(1), ∥ · ∥2) ≤ (1 + 1/2ε)2.

Note that if we want vanishing concentration, then we need d to grow slower than n. ♣
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Example 41 (Non-parametric class with smoothness/convexity). Consider now the class of
functions

FL = {g : [0, 1] → R | g(0) = 0, g is L-Lipschitz }.
We showed that N(ε;FL, ∥ · ∥∞) ≍ L

ε
. Moreover, ∥Fd

L∥∞ = L.

Rn (FL) ≲ L inf
ε

[
ε+

1√
n
· 1√

ε

]
≲

L

n
1
3

(One step bound)

Rn (FL) ≲
L√
n

∫ 1

0

√
1

u
du ≲

L√
n
. (Chaining bound)

Consider now the class of functions

Fd
L = {g : [0, 1]d → R | g(0) = 0, g is L-Lipschitz }.

Then N(ε;Fd
L, ∥ · ∥∞) ≍

(
L
ε

)d
. Moreover, ∥Fd

L∥∞ = L. ♣

Note. Note that the Rademacher complexity of classes of parametric functions is typically of
order 1/

√
n, whereas for non-parametric functions is 1/n1/d. ♦

Example 42 (Boolean function class). Consider the class of functions

F = {f : X → {0, 1}}.

We saw that F ∈ PD(ν), where ν = V C(F). We saw that this gave us

Rn(F) ≲

√
ν log(n)

n
.

We can show that for ε < 1

sup
P

log
(
N
(
ε;F , L2(P)

))
≲ ν log

(e
ε

)
.

Using this result

Rn(F) ≲
1√
n

∫ 1

0

√
ν log(e/n) ≤ c ·

√
ν

n

♣

Example 43 (Glivenko-Cantelli). Consider the class of functions

F = {1(· ≤ t) : t ∈ R},

then

Rn(F) ≲ c ·
√

1

n
which also implies

P
(
sup
t∈R

|Fn(t)− F (t)| ≥ c√
n
+

ε√
n

)
≤ 2e−ε

2/2.

♣
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Note. There is a sharper bound than the one above and it is called Dvoretzky-Kiefer-
Wolfwitz-Massart bound

P
(
sup
t∈R

|Fn(t)− F (t)| ≥ ε√
n

)
≤ 2e−2ε2 ∀ ε > 0.

♦

3.7 Orlicz Processes

All the bounds in this section apply to sub-Gaussian random variables/processes. It is also
useful to obtain bounds on the expected supremum and associated deviation bounds for
processes that are sub-exponential in nature. The notion of Orlicz norm allows us to treat
both sub-Gaussian and sub-exponential processes in a unified manner.

Definition 28 (Orlicz Norm). Consider a function ψq(t) := exp(tq) − 1, q ∈ [1, 2]. The
ψq−Orlicz norm of a zero-mean random variable X is given by

∥X∥ψq := inf{λ > 0 : E[ψq(|X|/λ)] ≤ 1]}.

The Orlicz norm is infinite if there is no λ ∈ R for which the given expectation is finite.

Proposition 36. If X ∼ sG(σ) then ∥X∥ψ2 ≤ σ, whereas if X ∼ sE(ν, ν), then ∥X∥ψ1 ≤ ν.

Proof. If X ∼ sG(σ), then

E[exp(X2/σ2)] ≤ 2 =⇒ E[exp(X2/σ2)− 1] ≤ 1 =⇒ E[ψ2(|X|/σ)] ≤ 1.

If X ∼ sE(ν, ν), then

E[exp(|X|/ν)] ≤ 2 =⇒ E[exp(|X|/ν)− 1] ≤ 1 =⇒ E[ψ1(|X|/ν)] ≤ 1.

■

We can obtain all the results we’ve seen so far in terms of the Orlicz norm.

Proposition 37 (Concentration inequality).

P(|X| ≥ t) = P
(
ψq
(
|X|/∥X∥ψq

)
≥ ψq

(
t/∥X∥ψq

))
≤ 1

ψq
(
t/∥X∥ψq

) .
Proposition 38 (Maximal inequality).

E
[
max
i∈[n]

|Xi|
]
≤ max

i
∥X∥ψq · ψ−1(n).

Proof.

ψq

(
E
[
max
i∈[n]

|Xi|
]
/σ

)
≤ E

[
max
i∈[n]

ψq (|Xi| /σ)
]
≤
∑
i∈[n]

E [ψq (|Xi| /σ)] ≤ n.

■
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3.8 Contraction Inequalities

Suppose we have (Xi, Yi)i∈[n]
iid∼ P and a loss function ℓ : Y × Y → R. Recall that we define

the empirical risk and the population risk as

R̂n(f) =
1

n

n∑
i=1

ℓ(f(Xi), Yi) R(f) = E[ℓ(f(X), Y )].

We know that

E
[
sup
f∈F

∣∣∣R̂n(f)−R(f)
∣∣∣] ≤ 2Rn(F).

However, we can think of the Rademacher complexity as being over the class of functions

G = {ℓ(f(x), y), f ∈ F},

implying that

E
[
sup
f∈F

∣∣∣R̂n(f)−R(f)
∣∣∣] ≤ 2Rn(G).

The question now is how does Rn(F) relate to Rn(G)? If we assume that ℓ is L−Lipschitz
in its first coordinate, then we can obtain the following result

E
[
sup
f∈F

∣∣∣R̂n(f)−R(f)
∣∣∣] ≤ 2E

[
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

εig (xi, yi)

∣∣∣∣∣
]
≤ 2L · E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif (xi)

∣∣∣∣∣
]
+ o(1)

Proposition 39 (Talagrand-Ledoux Contraction). Let {ϕj(·)}j∈[d] be function such that ϕj :
R → R, L−Lipschitz, and ϕj(0) = 0, i.e. {ϕj(·)}j∈[d] are centered L−Lipschitz. Moreover,

let T ⊆ Rd. Then

E

[
sup
θ∈T

d∑
j=1

εjϕj (θj)

]
≤ L · E

[
sup
θ∈T

d∑
j=1

εjθj

]
, E

[
sup
θ∈T

∣∣∣∣∣
d∑
j=1

εjϕj (θj)

∣∣∣∣∣
]
≤ 2L · E

[
sup
θ∈T

d∑
j=1

εjθj

]
.

Note. The centered assumption is not crucial. You can always define ϕ̃j(x) = ϕj(x)−ϕj(0).
Then, by triangle inequality, one term will involve a centered Lipschitz function and the other
would involve εjϕj(0) which we can disregard by standard WLLN/CLT arguments. ♦

Example 44. Suppose we have Zi = (Xi, Yi)
iid∼ P, where Yi ∈ {±1}, Θ = B2(r), and

∥X∥2 ≤M. Define the loss function as

ℓ(θ; z) := log
(
1 + exp

(
−yθ⊤x

))
.

Note that this is the likelihood function we would get by imposing a logistic regression model
P(Y = 1 | X) = Λ(X⊤θ). However, here we don’t assume that. First, we already showed that

E := E

[
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

ℓ(θ; z)−R(θ)

∣∣∣∣∣
]
≤ 2E

[
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

εiℓ (θ; zi)

∣∣∣∣∣
]
.
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Now we want to apply the contraction inequality so we need to show that ℓ(·, ·) is Lipschitz.

ℓ (θ; zi) = log(1 + exp (−yi ⟨θ, xi⟩)) = ϕi(θ̃i) + log 2, ϕi(θ̃i) = log(1 + exp(−yiθ̃i))− log 2,

where θ̃ ∈ Θ̃ = {(⟨θ, x1⟩, . . . , ⟨θ, xn⟩) : θ ∈ Θ, x ∈ X}. Then ϕi is 1−Lipschitz. Then

E ≤ 2E

[
sup
θ̃∈Θ̃

∣∣∣∣∣ 1n
n∑
i=1

εiϕi(θ̃i)

∣∣∣∣∣
]
+ 2E

[
sup
θ̃∈Θ̃

∣∣∣∣∣ 1n
n∑
i=1

εi log 2

∣∣∣∣∣
]

≤ 2E

[
sup
θ̃∈Θ̃

∣∣∣∣∣ 1n
n∑
i=1

εiϕi(θ̃i)

∣∣∣∣∣
]
+ 2E

[∣∣∣∣∣ 1n
n∑
i=1

εi

∣∣∣∣∣
]
log 2

≤ 2L · E

[
sup
θ̃∈Θ̃

∣∣∣∣∣ 1n
n∑
i=1

εiθ̃i

∣∣∣∣∣
]
+

2√
n
log 2

= 2 · E

[
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

εi ⟨xi, θ⟩

∣∣∣∣∣
]

= 2 · r · E

[∥∥∥∥∥ 1n
n∑
i=1

εixi

∥∥∥∥∥
2

]
≤ 2rM√

n

♣
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4 Random Matrix Theory

Random matrix theory seeks to study the various properties of matrices with random entries.
The sample covariance matrix provides a motivating example. Given n independent random
samples (xi)i∈[n] ⊆ Rd,E[xi] = 0, how well does the sample covariance matrix Σ̂ := 1

n

∑
xix

T
i

approximate the true covariance Σ = E[xixTi ]? This is measured in terms of

∥Σ̂−Σ∥op or |λmax(Σ̂)− λmax(Σ)|.

To answer such questions, we need to understand the various properties in which these
matrices can differ, and how we can control the influence of randomness on these properties.

4.1 Linear Algebra Review

As our interest will primarily be focused on the spectral properties of these matrices, the
following representations will be useful. The singular value decomposition (SVD) decomposes
a matrix into a pair of orthogonal matrices and a diagonal matrix. Namely, it breaks the
transformation down into a pair of rotations, one in the domain and one in the codomain,
and a scaling. It also gives a way of breaking a matrix into a sum of simple rank one matrices.

Theorem 3 (Singular Value Decomposition). Any rectangular matrix A ∈ Rn×m, n ≥ m has
a decomposition:

A = UΣV⊤ =
r∑
i=1

σiuiv
T
i ,

U⊤U = Im, VV⊤ = V⊤V = Im, and Σ = diag(σ1(A), . . . , σm(A))

for U ∈ Rn×m, V ∈ Rm×m, and Σ ∈ Rm×m, where r = rank(A) is the number of nonzero
singular values.

In general, we will assume the singular values are in a non-increasing order. Namely:

σmax(A) = σ1(A) ≥ σ2(A) ≥ · · · ≥ σm(A) = σmin(A) ≥ 0.

The singular values also have a convenient representation in terms of the L2 norm which is
often much more tractable for use in proofs.

Theorem 4 (Variational Representation of Singular Values (Courant-Fisher-Weyl)).

σk(A) = min
V :dim(V )=n−k+1

max
x∈V,∥x∥2=1

∥Ax∥2 = max
V :dim(V )=k

min
x∈V,∥x∥2=1

∥Ax∥2.

In particular, for the maximum and minimum singular values:

σmax(A) = max
∥x∥2=1

∥Ax∥2, and σmin(A) = min
∥x∥2=1

∥Ax∥2.
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Recall the operator norm and rank of a matrix:

∥A∥op := σmax(A), and rank(A) := max{k : σk(A) > 0} = |{k : σk(A) ̸= 0}|.

Although we will not use it much, for completeness we include the Jordan decomposition.
This represents A in a basis of its generalized eigenvectors, creating an upper-triangular and
almost diagonal matrix.

Theorem 5 (Jordan Normal Form). Any A ∈ Rd×d is similar to a block diagonal matrix
J ∈ Rd×d:

A = UJU−1, and J = diag(Jd1(λ1), ...,Jdk(λk)) (4.1)

where the blocks Jdi are of the form:

Jdi =


λi 1 0 . . . 0
0 λi 1 . . . 0
...

. . .

0 0 0 . . . λi

 ∈ Cdi×di . (4.2)

Here λi are the eigenvalues of A. Moreover this representation is unique up to reordering of
the Jdi.

The above lacks utility because in general a matrix does not have a nice eigenbasis, but in
the special case of symmetric matrices such a basis does exist. Let Sd×d denote the set of all
d× d symmetric matrices, i.e.

S := {Q ∈ Rd×d : Q = Q⊤}.

The below theorem shows any symmetric matrix has an orthonormal basis of eigenvectors.

Theorem 6 (Spectral Decomposition of Symmetric Matrices). Any Q ∈ Sd×d has a decom-
position:

Q = UΛU⊤, with U ∈ Rd×d,Λ ∈ Rd×d . (4.3)

Moreover:
U⊤U = UU⊤ = Id, and Λ = diag(λ1(Q), · · · , λd(Q))

where λi are the eigenvalues of Q, all of which are real, and the columns of U are an or-
thonormal basis of the corresponding eigenvectors.

Note. We can see that if the matrix is symmetric than its eigenvectors U = {u⊤
1 ,u

⊤
2 , . . . ,u

⊤
d }⊤

are orthonormal basis for the eigenspace as U⊤U = Id. ♦

Again, we assume the eigenvalues are placed in non-increasing order:

λmax(Q) := λ1(Q) ≥ λ2(Q) ≥ · · · ≥ λd(Q) =: λmin(Q).

As with the singular values, the eigenvalues have a variational representation more useful for
proofs.
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Lemma 14 (Variational representation of extremal eigenvalues). For Q ∈ Sd×d:

λmax(Q) = max
||x||2=1

⟨x,Qx⟩, and λmin(Q) = min
||x||2=1

⟨x,Qx⟩.

For Q ∈ Sd×d there is a simple relationship between eigenvalues and singular values:

{ |λk(Q)| }k∈[d] = {σk(Q)}k∈[d].

Note. Note that the above is an equivalence between sets, but we can’t say anything on how
the k−th eigenvalue relates to the k−th singular value. This is because eigenvalues might be
negative. The next statement recovers a one-to-one relationships between λk and σk by ruling
out negative eigenvalues. ♦

Let Sd×d+ := {Q ∈ Sd×d : Q ⪰ 0} denote the set of positive semi-definite matrices, then

∀Q ∈ Sd×d+ , λk(Q) = σk(Q) ∀k ∈ [d],

because all eigenvalues of positive semi-definite matrices are non-negative. In particular, for
A ∈ Rn×m since A⊤A ∈ Sm×m

+ we have:

λk(A
⊤A) = σk(A)2.

This last equation is particularly useful because we can first take the SVD of A and then
look at eigenvalues of A⊤A which simplifies to

A⊤A = (UΣV⊤)⊤UΣV⊤ = VΣ2V⊤,

where V is an eigenmatrix and Σ are eigenvalues.

Often we will be interested in how these spectral properties vary as we perturb our system.
Namely, if we have some A,E ∈ Rn×m where E is viewed as deterministic noise, how do the
eigenvalues and singular values of A relate to the perturbed A = A + E? The following
proposition bounds the fluctuations of the singular values due to such perturbation.

Proposition 40 (Weyl’s Perturbation Inequality). For any A,E ∈ Rn×m and k ∈ [m]:

|σk(A+ E)− σk(A)| ≤ ||E||op.

If furthermore Q,E ∈ Sd×d are symmetric, k ∈ [d]:

|λk(Q+ E)− λk(Q)| ≤ ||E||op.

Note. The above proposition tells us that singular values and eigenvalues (interpreted as
functions) are Lipschitz in the operator norm. ♦
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4.2 Sample Covariance Matrix

Let’s apply our above results to the sample covariance matrix Σ̂ which is naturally a PSD
matrix:

Σ̂ =
1

n

n∑
i=1

xix
⊤
i =

1

n
X⊤X

with X =
[
x1 x2 · · · xn

]⊤ ∈ Rn×d. Then, by defining Q = Σ and E = Σ̂ − Σ, we see
that Weyl’s Inequality implies:

|λk(Q+ E)− λk(Q)| ≤ ∥E∥op ⇐⇒
∣∣∣λk(Σ̂)− λk(Σ)

∣∣∣ ≤ ||Σ̂−Σ||op. (4.4)

Moreover, as Σ̂ ∈ Sn×n+ , we further know that

λk(Σ̂) = σk(X/
√
n)2

The operator norm gives us a way of bounding the spectral gap between the sample covariance
and true covariance, and further motivates our interest in this norm. Using our variational
representation of the eigenvalues, the upper bound in (4.4) can be re-expressed as:

∥Σ̂−Σ∥op := sup
∥ν∥2=1

∣∣∣⟨ν, (Σ̂−Σ)ν⟩
∣∣∣ = sup

∥ν∥2=1

∣∣∣∣∣ 1n
n∑
i=1

⟨xi,ν⟩2 − ν⊤Σν

∣∣∣∣∣ .
Therefore, for any fixed d the above is the supremum of an empirical process. In particular,
controlling the deviation ∥Σ̂ − Σ∥op is equivalent to establishing a uniform law of large
numbers for the class of functions x 7→ ⟨x,ν⟩2, indexed by vectors ν : ∥ν∥2 = 1.

Note. Sometimes we may want to work with other matrix norms beyond ∥ · ∥op. A standard
result in linear algebra is that all such norms are equivalent, differing only up to a universal
constant. However, this constant depends on the dimension of the matrices, so we must be
careful to take this into account if we want to make claims about arbitrary dimensions. ♦

4.2.1 Eigenvalues of Sample Covariance of Gaussian Ensembles

Suppose we have a sample where each xi
iid∼ N(0,Σ). In this case we say that the associated

matrix X ∈ Rn×d, with x⊤
i as its i−th row, is draw from the Σ−Gaussian ensemble. The

associated sample covariance Σ̂ is said to follow a multivariate Wishart distribution.

Theorem 7. Consider the setting:

(xi)i∈[n]
iid∼ N(0,Σ), X =

x
⊤
1
...
x⊤
n

 ∈ Rn×d, and Σ̂ =
1

n

n∑
i=1

xix
⊤
i =

1

n
X⊤X.

Then

P

(
σmax(X)√

n
≥ λmax(

√
Σ)(1 + t) +

√
tr(Σ)

n

)
≤ e−nt

2/2.
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Moreover, if n ≥ d:

P

(
σmin(X)√

n
≤ λmin(

√
Σ)(1− t)−

√
tr(Σ)

n

)
≤ e−nt

2/2

and
E[σmax(X)] ≤

√
n+

√
d, E[σmin(X)] ≥

√
n−

√
d.

Corollary 5. When Σ = Id, the following event happens with probability at least 1− δ:
σmax(X)√

n
≤ 1 +

√
2 log(2/δ)

n
+

√
d

n

σmin(X)√
n

≥ 1−
√

2 log(2/δ)

n
−
√
d

n

 .

Note. By standard properties of the multivariate Gaussian, we can always write X = W
√
Σ,

where W is a standard Gaussian random matrix and Σ =
√
Σ
√
Σ. Therefore,∥∥∥Σ̂−Σ

∥∥∥
op

=

∥∥∥∥ 1nX⊤X−Σ

∥∥∥∥
op

=

∥∥∥∥√Σ

(
1

n
W⊤W

)√
Σ−

√
Σ
√
Σ

∥∥∥∥
op

=

∥∥∥∥√Σ

(
1

n
W⊤W − Id

)√
Σ

∥∥∥∥
op

= ∥Σ∥op ·
∥∥∥∥ 1nW⊤W − Id

∥∥∥∥
op

which reduces the problem to the case Σ = I.2 ♦

Before proving the expectation bounds, we introduce two useful Gaussian comparison results
that we will use to prove the upper and lower bounds of the singular values, respectively.

Proposition 41 (Sudakov-Fernique inequality). Let (Zθ)θ∈T and (Yθ)θ∈T be two continuous
Gaussian processes on a separable space T such that E[Zθ] = E[Yθ] (not necessarily 0) for all
θ ∈ T . If E[(Zθ − Zθ′)

2] ≤ E[(Yθ − Yθ′)
2] for all θ, θ′ ∈ T , then

E
[
max
θ∈T

Zθ

]
≤ E

[
max
θ∈T

Yθ

]
.

Note. There is another way to interpret the condition of the second moment of the difference

E[(Zθ − Zθ′)
2] ≤ E[(Yθ − Yθ′)

2].

2This trick of splitting Σ is called “unwhitening” in machine learning
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If E[Z2
θ ] = E[Y 2

θ ], then

E[(Zθ − Zθ′)
2] ≤ E[(Yθ − Yθ′)

2] ⇐⇒ E[ZθZθ′ ] ≥ E[YθYθ′ ].

In words, we can think of this condition as imposing some structure on the covariance of the
Gaussian processes. In particular, it’s telling us that the elements in the Z process covary
more than the elements in Y . Intuitively, if the elements of a stochastic process covary a lot,
then their expected squared differences will be small. ♦

Example 45. Let’s see an extreme example of two Gaussian processes to fix ideas. In partic-
ular, we will consider the case of two processes: one that is perfectly correlated, another that

is completely independent. Let T = {1, 2, . . . , N}, Yθ
iid∼ N(0, 1) and Zθ = Z ∼ N(0, 1),∀ θ ∈

T . Then
E[(Zθ − Zθ′)

2] = 0 ≤ 2 = E[(Yθ − Yθ′)
2].

By the Sudakov-Fernique inequality we get that

E
[
max
θ∈T

Zθ

]
≤ E

[
max
θ∈T

Yθ

]
,

but we can actually calculate it! By perfect correlation

E
[
max
θ∈T

Zθ

]
= E[Z] = 0,

whilst by the maximal inequality

E
[
max
θ∈T

Yθ

]
≍
√

2 log n.

♣

Note (Smoothed Max Operator). Before going through the proof, we introduce the “smoothed
max” operator with parameter β > 0, which is defined as

Fβ : Rn → R, Fβ(v) :=
1

β
log

( n∑
i=1

eβvi
)
.

Its first nice property is that

max
i∈[n]

vi ≤ Fβ(v) ≤ max
i∈[n]

vi +
log n

β
.

To see this note that

max
i∈[n]

eβvi ≤
n∑
i=1

eβvi ≤ nmax
i∈[n]

eβvi ,

because non-negativity of the exponential function and β. Since the logarithm is an increasing
function and β > 0

1

β
logmax

i∈[n]
eβvi ≤ 1

β
log

n∑
i=1

eβvi ≤ 1

β
log nmax

i∈[n]
eβvi
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1

β
max
i∈[n]

log eβvi ≤ Fβ(v) ≤
log n

β
+

1

β
max
i∈[n]

log eβvi

max
i∈[n]

vi ≤ Fβ(v) ≤
log n

β
+max

i∈[n]
vi.

In words, the smoothed max operator is sandwiched between the true maximum and the max-
imum shifted by a term which is o(β−1). From this fact we also know that

lim
β→∞

Fβ(x) = max
i∈[n]

xi.

The next property is the most important one, which justifies both the name of the operator
and why it is extremely useful in practice:

∇Fβ : Rn → [0, 1]n, ∇Fβ(v) =

(
eviβ∑n
j=1 e

vjβ

)
i∈[n]

, lim
β→∞

∇Fβ(v) =
(
1(Xi = max

j∈[n]]
Xj)

)
i∈[n]

.

We see that the smoothed max operator is differentiable and its gradient converges to the
indicator denoting the maximum. Typically

pi(x) :=
eviβ∑n
j=1 e

vjβ

is called the “softmax”. Finally

∂2

∂vi∂vj
Fβ(v) = β(pi(v)1(i = j)− pi(v)pj(v))

♦

Proof of Proposition 41. We prove an equivalent version of the statement which say, suppose that Z and Y
are two Gaussian vectors in Rn with E[Z] = E[Y ] and

E
[
(Zi − Zj)

2
]
≤ E

[
(Yi − Yj)

2
]

∀i, j ∈ [n].

Then

E
[
max
i∈[n]

Zi

]
≤ E

[
max
i∈[n]

Yi

]
.

The two versions are equivalent despite n being finite because we required T to be a separable space.

We will rely on the interpolation method and the smoothed max operator. Let µ = E[Z] = E[Y ] and
define Z̃ = Z − µ and Ỹ = Y − µ, so that Z̃ and Ỹ are both Gaussian with zero-mean (but not necessarily
independent). Define an auxiliary random vector W (θ) := Z̃ sin θ+ Ỹ cos θ ·+µ for θ ∈ [0, π/2] to interpolate
between Z and Y . In addition, define φ(θ) := E[Fβ(W (θ))] for θ ∈ [0, π/2] and β > 0, where Fβ is the
smoothed max operator.

Note that the endpoints of the path from 0 to π/2 are the objects we want to compare

φ(0) = E[Fβ(Z)], φ(π/2) = E[Fβ(Y )].
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Therefore we want to show that φ is increasing on [0, π/2] for any positive β. To show this, we evaluate the
derivative of ϕ using Stein’s lemma (essentially integration by part), which states for a standard Gaussian
random variable G ∼ N(0, 1) and any differentiable function f : R → R that E[Gf(G)] = E[f ′(G)], granted
that the two expectations both exist. Using Fubini’s theorem to justify changing order of limits and applying
Stein’s lemma, some algebra yields

φ′(θ) = E
[ n∑

i=1

∂iFβ(W (θ))(− sin θ · Z̃i + cos θ · Ỹi + µ)

]

= cos θ sin θ

n∑
i,j=1

E[∂2i,jFβ(W (θ))] ·
(
E[ỸiỸj ]− E[Z̃iZ̃j ]

)
.

Denote pi(v) := ∂iFβ(v) = eβvi/
(∑n

j=1 e
βvj
)
, which defines a probability distribution on [n]. We can express

second derivatives of Fβ as

∂2i,gFβ(v) =

{
β
(
pi(v)− pi(v)

2
)

when i = j,

−βpi(v)pj(v) when i ̸= j.

The remaining work is just computation:

n∑
i,j=1

E[∂2i,jFβ(W (θ))] ·
(
E[ỸiỸj ]− E[Z̃iZ̃j ]

)
= β

n∑
i=1

pi(x)
(
E[Ỹ 2

i ]− E[Z̃2
i ]
)
− β

n∑
i,j=1

pi(x)pj(x)
(
E[ỸiỸj ]− E[Z̃iZ̃j ]

)
=
β

2

n∑
i,j=1

pi(x)pj(x)
(
E[Ỹ 2

i + Ỹ 2
j ]− E[Z̃2

i + Z̃2
j ]
)
− β

n∑
i,j=1

pi(x)pj(x)
(
E[Ỹiỹj ]− E[Z̃iZ̃j ]

)
=
β

2

n∑
i,j=1

pi(x)pj(x)
(
E[(Ỹi − Ỹj)

2]− E[(Z̃i − Z̃j)
2]
)
.

Therefore, E[Fβ(x)] ≤ E[Fβ(y)], and sending β → ∞ gives the desired comparison result. ■

The following is an extension of the Sudakov-Fernique inequality.

Theorem 8 (Gordon’s inequality). Let (Zs,t)s∈S,t∈T and (Ys,t)s∈S,t∈T be two Gaussian pro-
cesses such that E[Zs,t] = E[Ys,t] (not necessarily 0) for all s ∈ S and t ∈ T . If we have

E
[
(Zs,t1 − Zs,t2)

2
]
≥ E

[
(Ys,t1 − Ys,t2)

2
]

∀t1, t2 ∈ T, s ∈ S

and moreover

E
[
(Zs1,t1 − Zs2,t2)

2
]
≤ E

[
(Ys1,t1 − Ys2,t2)

2
]
,∀t1, t2 ∈ T, s1 ̸= s2 ∈ S.

Then we have
E
[
max
s∈S

min
t∈T

Zs,t

]
≤ E

[
max
s∈S

min
t∈T

Ys,t

]
.

Proof of Theorem 7. We do the proof for the case Σ = I. By the whitening trick we know that this is without
loss of generality. We will only prove the first tail bound (7) involving σmax(X) and the proof of the other
tail bound is similar. We use the standard two-part proof technique of first proving a concentration bound
of σmax(X) around its mean, and then bound the mean.
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First we prove the concentration result. Namely we aim to show:

P
( ∣∣∣σk(X)− E[σk(X)]

∣∣∣ ≥ t
)
≤ 2e−t2/2. (4.5)

By Weyl’s Inequality:

|σk(X)− σk(Y)| ≤ ||X−Y||op ≤ ||X−Y||F = ||vec(X)− vec(Y)||2. (4.6)

Hence viewing the matrices X,Y as gaussian vectors, we see the function σk(·) is a 1-Lipschitz function of
i.i.d. N(0, 1) random variables. Then we can use Gaussian concetration to get (4.5).

The second step is to bound the expectation of σmax(X) and σmin(X). We first establish the expectation
bound for σmax(X). By the variational representation

σmax(X) = sup
(u,v)∈Sn−1×Sd−1

⟨u,Xv⟩.

Note that for a fixed u ∈ Sn−1,v ∈ Sd−1 (with Sm−1 = {x ∈ Rm : ∥x∥2 = 1}) we have that Zu,v := ⟨u,Xv⟩
is a Gaussian random variable. Moreover, if we let θ = (u,v), we can see that {Zθ}θ is a Gaussian process.3

This follows from linearity of the inner product and closure of the Gaussian family to linear transformations.

Define Yu,v = ⟨u,g⟩+ ⟨v,h⟩, (gj)j∈[n]
iid∼ N(0, 1), (hj)j∈[n]

iid∼ N(0, 1). We now verify the conditions to apply
the Sudakov-Fernique inequality to Zu,v and Yu,v.

E[Zu,vZu′,v′ ] = E[⟨X,uv⊤⟩⟨X,u′v′⊤⟩]

= E
[ n∑
i,i′=1

d∑
j,j′=1

Xijuivj ·Xi′j′u
′
i′v

′
j′

]

=

n∑
i=1

d∑
j=1

uiu
′
i · vjv′j

= ⟨uv⊤,u′v′⊤⟩
= ⟨u,u′⟩ · ⟨v,v′⟩,

where in the third equality the cross terms vanish by the independence assumption among the entries and
ve also used that each Xij has unit variance. Therefore,

E[(Zu,v − Zu′,v′)2] = E[Z2
u,v]− 2E[Zu,vZu′,v′ ] + E[Z2

u,v] = 2− 2 · ⟨u,u′⟩⟨v,v′⟩

since ∥u∥2 = ∥v∥2 = 1. Similarly, we have

E[Yu,vYu′,v′ ] = E[(⟨u,g⟩+ ⟨v,h⟩)(⟨u′,g⟩+ ⟨v′,h⟩)] = ⟨u,u′⟩+ ⟨v,v′⟩,

and thus

E[(Yu,v − Yu′,v′)2] = E[Y 2
u,v]− 2E[Yu,vYu′,v′ ] + E[Y 2

u′,v′ ] = 4− 2(⟨u,u′⟩+ ⟨v,v′⟩).

The last step to verify the condition for Sudakov-Fernique inequality

E[(Yu,v − Yu′,v′)2]− E[(Zu,v − Zu′,v′)2] = 2 · (1− ⟨u,u′⟩)(1− ⟨v,v′⟩) ≥ 0,

where we used the Cauchy-Schwartz inequality to deduce ⟨u,u′⟩, ⟨v,v′⟩ ≤ 1 in the last inequality.

Therefore

E
[

max
(u,v)∈Sn−1×Sd−1

⟨u,Xv⟩
]
≤ E

[
max

(u,v)∈Sn−1×Sd−1
(⟨u,g⟩+ ⟨v,h⟩)

]
(Sudakov-Fernique)

3A stochastic process {Zθ}θ∈Θ is a Gaussian process if ∀n, (θ1, . . . , θn) ⊆ Θ the distribution of
(Zθ1 , Zθ2 , . . . , Zθn) is multivariate Gaussian.
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= E[ max
u∈Sn−1

⟨u,g⟩] + E[ max
v∈Sd−1

⟨v,h⟩] (independence)

= E[∥g∥2] + E[∥h∥2] (definition)

≤
√
n+

√
d. (Hölder’s)

The definition step follows from the fact that we defined the unit sphere S with respect to the ℓ2-norm and
the fact that the dual norm of the ℓ2-norm is the ℓ2-norm.

Now we establish the lower bound of E[σmin(X)]. Note that we require n ≥ d, since the inequality is trivial
otherwise. Define Zu,v, Yu,v as before. Some straightforward calculation verifies that Zu,v and Yu,v indeed
satisfy the conditions for Gordon’s inequality (Theorem 8). Recall the following variational definition of
smallest singular value

σmin(X) = min
v∈Sd−1

max
u∈Sn−1

Zu,v.

Using the variational characterization, we have

−E[σmin(X)]
(1)
= −E

[
min

v∈Sd−1
max

u∈Sn−1
Zu,v

]
(2)
= −E

[
min

v∈Sd−1
max

u∈Sn−1
Yu,v

]
= E

[
max

v∈Sd−1
min

u∈Sn−1

(
⟨g,u⟩+ ⟨h,v⟩

)]
(3)
= E

[
max

v∈Sd−1
⟨h,v⟩

]
+ E

[
min

u∈Sn−1
⟨g,u⟩

]
(4)
= E[∥h∥2]− E[∥g∥2] ≲

√
d−

√
n,

where we have used the variational definition of singular value in (1), Gordon’s inequality in (2), linearity of
expectation and separability of the objective in (3), and finally the definition of dual norm in (4).

Putting together the pieces gives the claim. ■

The Gaussian comparison inequalities also lead to the following lower bound on the supremum
of Gaussian processes, known as the Sudakov minoration.

Theorem 9 (Sudakov minoration). Let (Xθ)θ∈T be a zero-mean Gaussian process on T ̸= ∅.
Then

E
[
sup
θ∈T

Xθ

]
≥ sup

ϵ>0

ϵ

2

√
logM(ϵ;T, ρX),

where M(ϵ;T, ρX) is the ϵ-packing number of T in the metric ρX(θ, θ
′) :=

√
V (Xθ −Xθ′).

Heuristically, the Sudakov lower bound implies that the one-step discretization bound for
Gaussian complexity is nearly tight.

4.3 Concentration of sub-Gaussian sample covariance

Let’s first quickly remind ourselves with the definition of variance and sample covariance.

Given any set of i.i.d. sampled random variables {Xi}i∈[n]
iid∼ P ∈ P(Rd),E[Xi] = 0, its

covariance (denoted as Σ) and sample covariance (denoted as Σ̂) are defined respectively as:

Σ = E[XiX
⊤
i ] ∈ Sd×d+ , and Σ̂ =

1

n

n∑
i=1

XiX
⊤
i =

1

n
X⊤X ∈ Sd×d+ .
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So far we proved that if (Xi)i∈[n]
iid∼ N(0,Σ), then

∥Σ̂− Σ∥op ≲ ∥Σ∥op ·

(√
d

n
+
d

n

)
,

with probability at least 1− δ.

Now we introduced the notion of sub-Gaussian random vector, which is a natural extension
of sub-Gaussian random variables:

Definition 29 (Sub-Gaussian random vector). We say a r.v. x ∈ Rd with mean 0 is a
sub-Gaussian random vector, denoted as sG(σ), if:

E[eλ⟨v,x⟩] ≤ eλ
2∥v∥22σ2/2, ∀λ ∈ R,∀ v ∈ Rd .

A sufficient condition for X ∈ Rd to be sG(σ) is that each Xi is independent and Xi ∼ sG(σ)
since:

E[eλ⟨v,X⟩] =
d∏
i=1

E[eλviXi ] ≤
d∏
i=1

eλ
2v2i σ

2/2 = eλ
2∥v∥22σ2/2.

Theorem 10. Let {Xi}i∈[n] ∈ Rd be independent mean-0 sG(σ). Then with probability at
least 1− δ, we have

∥Σ̂− Σ∥op ≤ Cσ2(

√
d+ log(2/δ)

n
+
d+ log(2/δ)

n
),

for some universal constant C.

Up to a constant, this result matches the one obtained assuming Gaussianity.

We need to introduce one more lemma before we can tackle the proof of Theorem 10:

Lemma 15. Let Ωϵ = {v1, . . . , vNϵ} be the ϵ-covering of Sd−1 in ∥·∥2 norm. For all A ∈ Rd×d,

∥A∥op ≤
1

1− 2ϵ− ϵ2
sup
v∈Ωϵ

|⟨v, Av⟩|.

Proof. Given the definition of ϵ-covering, we know that for all v ∈ Sd−1, there exists vj ∈ Ωϵ such that
∥v − vj∥ ≤ ϵ. This implies that:

⟨v,Av⟩ = ⟨vj , Avj⟩+ 2⟨v − vj , Avj⟩+ ⟨v − vj , A(v − vj)⟩
=⇒ sup

v∈Sd−1

|⟨v,Av⟩| ≤ sup
vj∈Ωϵ

|⟨vj , Avj⟩|+ (2ϵ+ ϵ2)∥A∥op

=⇒ ∥A∥op ≤
1

1− 2ϵ− ϵ2
sup
v∈Ωϵ

|⟨v,Av⟩|.

■
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Proof of Theorem 10. Let ϵ = 1/4. By previous results on cover number, we have |Ωϵ| ≤ (1 + 2
ϵ )

d = 17d.
Also by the previous Lemma, it follows that:

∥Σ̂− Σ∥op ≤ 2 sup
v∈Ω1/4

|⟨v, (Σ̂− Σ)v⟩|.

Considering the sub-Exponential tail bound of |⟨v, (Σ̂− Σ)v⟩| for fixed v, we have∣∣∣⟨v, (Σ̂− Σ)v⟩
∣∣∣ = ∣∣∣∣∣ 1n

n∑
i=1

(⟨v, xi⟩2 − E[⟨v,Xi⟩2])

∣∣∣∣∣ .
Then, since we know that ⟨v,Xi⟩/σ is sG(1), previous lectures gives:[

⟨v,Xi⟩2 − E[⟨v,Xi⟩2]
]
/σ2 ∈ sE(1, 1)

=⇒ 1

n

n∑
i=1

(⟨v,Xi⟩2 − E[⟨v,Xi⟩2])/σ2 ∈ sE(
1√
n
,
1

n
)

=⇒ P(|⟨v, (Σ̂− Σ)v⟩| ≥ σ2t) ≤ 2 exp(−nmin{t2, t})

Then by a union bound:

P( sup
v∈Ω1/8

|⟨v, (Σ̂− Σ)v⟩| ≥ σ2t) ≤ |Ωϵ|2 exp(−nmin{t2, t}) = 2 exp(−nmin{t2, t}+ d log 17).

Finally, setting
δ = 2 exp(−nmin{t2, t}+ d log 17)

yields

t = Cmax{
√
d+ log(1/δ)

n
,
d+ log(1/δ)

n
}

for some constant C, thereby proving the original statement. ■

Note. With respect to the Gaussian case we lost the possibility of saying something about the
behavior of the singular values. ♦

4.3.1 Concentration of sample covariance of bounded random vector

Theorem 11. Given a set of independent random vectors {Xi}i∈[n] ∈ Rd with E[Xi] = 0 and
covariance Σ = E[XiX

⊤
i ], and ∥Xi∥2 ≤ b almost surely for all i, then with probability 1− δ,

∥Σ̂− Σ∥op ≲
√
b∥Σ∥op log(2d/δ)

n
+
b

n
log(2d/δ).

In some sense, ∥X∥2 ≤ b is stronger than sub-Gaussianity, but if we apply the result we saw
in the previous section we will lose a factor of d.

Example 46. Consider X ∼ Unif({
√
d · ei}i∈[n]). Then Σ = Id, and b =

√
d. Consequently,

∥Σ̂− Σ∥op ≲
√
d log(2d/δ)

n
+
d

n
log(2d/δ),

which is the sharp bound. Note that Theorem 10 would get an additional factor of d. ♣

The proof of this Theorem is a direct corollary of the matrix Bernstein theorem, which we
will introduce and prove in later sections.
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4.4 Matrix Hoeffding/Bernstein inequality

We already showed, in the scalar case, that if Xi
iid∼ sG(σ) and E[Xi] = 0, then

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ 2 · exp

{
−nt

2

2σ

}
.

In what follows we will show that the same results carries over to matrices, by accounting

for the appropriate modifications. Namely, if Qi
iid∼ sG(V ), ]E[Qi] = 0, Qi ∈ Sd×d, then

P

∥∥∥∥∥ 1n
n∑
i=1

Qi

∥∥∥∥∥
op

≥ t

 ≤ 2 · d · exp
{
− nt2

2∥V ∥op

}
.

Note. We haven’t defined what it means that Qi
iid∼ sG(V ) when Qi is a matrix, but we see

the similarity between the two cases. ♦

To show the result above, we start with defining new quantities.

Definition 30. For any symmetric matrix Q ∈ Sd×d, and an analytic function f , with a
slight abuse of notation we will define

f(Q) ≜ Udiag(f(λ1), . . . , f(λd))U
⊤.

In words, when an analytic function f is applied to a symmetric matrix Q, we need consider
it’s impact on its eigenvalue, it doesn’t act on Q pointwise.

Example 47. If f(x) = ex, then eQ = Udiag(eλ1 , . . . , eλd)U⊤. If f admits a Taylor expan-
sion, then

f(x) =
∞∑
l=0

f (l)(0)

l!
xl,

similarly

f(Q) =
∞∑
l=0

f (l)(0)

l!
Ql, eQ =

∞∑
l=0

1

l!
Ql,

where Ql = Q× · · · ×Q. ♣

Let’s now refresh the proof for the Hoeffding’s bound in the scalar case

P

(
n∑
i=1

(Xi − E [Xi]) ≥ t

)
≤ inf

λ≥0

E
[
eλ

∑n
i=1(Xi−E[Xi])

]
eλt

(Chernoff)

= inf
λ≥0

∏n
i=1 E

[
eλ(Xi−E[Xi])

]
eλt

(Scalar Ternsorization)

≤ inf
λ≥0

(
n∏
i=1

e
λ2

2
σ2

)
e−λt (scalar sG)
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= e−
nt2

2ε2 (optimization)

Now we will substitute each of those steps with the appropriate matrix version.

Matrix Chernoff. LetQ ∈ Sd×d, e.g., Q = 1
n

∑n
i=1Qi whereQi = XiX

⊤
i so that E[Qi] = 0.

Then for any λ ≥ 0,

P(λmax(Q) ≥ t) = P(eλ·λmax(Q) ≥ eλt)

= P(λmax(eλQ) ≥ eλt)

≤ E[λmax(eλQ)]
eλt

(Markov)

≤ E[tr(eλQ)]
eλt

=
tr(E[eλQ])

eλt
(linearity of trace)

where the first equality is needed to make the random variable non-negative and apply
Markov’s inequality; the second equality follows form the fact that the index of the maxi-
mum eigenvalue of Q is the same as the index of the maximum eigenvalue of eλQ because
λ is positive and the exponential function is increasing, thus λmax(e

λQ) = eλ·λmax(Q); the last
inequality follows from the fact that the trace of a square matrix is the sum of the eigenvalues.

Thus this directly gives the Matrix Chernoff Lemma:

Lemma 16 (Matrix Chernoff). For any random symmetric matrix Q ∈ Sd×d, we have

P(λmax(Q) ≥ t) ≤ inf
λ≥0

[
tr(E(eλQ))

eλt

]
.

Sub-Gaussian/Exponential Matrix. Now we introduce the notions of sub-Gaussian or
sub-Exponential random matrices, where are matrix counterparts of sub-Guassuan or sub-
Exponential random variables. We will use the notation A ⪯ B to denote that the matrix
B − A is positive semi-definite.

Definition 31 (Sub-Gaussian random matrix). For any random symmetric matrix Q ∈ Sd×d
with E[Q] = 0, if

E[eλQ] ⪯ eλ
2V/2, ∀λ ∈ R,

for some V ∈ Sd×d+ , then Q is called a sub-Gaussian matrix denoted as sG(V ).

Note. Note that if V is a scalar we have to pay attention because if V = σ2, then we would
conclude that X ∼ sG(σ2) when we instead know that X ∼ sG(σ). To make everything
coherent, we need to take the square root of the sub-Gaussian parameter in the scalar case.
♦
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Example 48. As an example, if Q = ϵB, where B ∈ Sd×d is a deterministic matrix and
ε ∼ Unif({±1}). Then E[Qℓ] = 0 for ℓ odd. Therefore,

E[eλQ] =
∞∑
ℓ=0

λℓ

ℓ!
E[Qℓ] =

∞∑
l=0

λ2ℓ

(2ℓ)!
E[Q2ℓ] =

∞∑
ℓ=0

λ2ℓ

(2ℓ)!
B2ℓ ⪯

∞∑
ℓ=0

1

ℓ!

(
λ2B2

2

)ℓ
= eλ

2B2/2,

where the inequality step follows from the factorial/bi-factorial relationship which says that
(2ℓ)! ≥ (2ℓ)!! = ℓ!2ℓ. Therefore, Q ∼ sG(B2). ♣

Definition 32 (Sub-Exponential random matrix). For any random symmetric matrix Q ∈
Sd×d with E[Q] = 0, if

E[eλQ] ⪯ eλ
2V/2, ∀|λ| ≤ 1/α,

for some V ∈ Sd×d+ , α ∈ R ≥ 0, then Q is called a sub-Exponential matrix denoted as sE(V, α).

Note. A sufficient condition of Q being sE(V(Q), b) is that E[Q] = 0 and ∥Q∥op ≤ b a.s.

Note V(Q) = E[Q2] − E[Q]2. As an example, if ∥Xi∥2 ≤
√
b a.s. and E[XiX

⊤
i ] = Σ, then

defining Q = XiX
⊤
i − Σ means ∥Q∥op ≤ b and V(Q) ⪯ bΣ, therefore Q ∼ sE(bΣ, b). ♦

Tensorization of matrix MGF Note that unlike the scalar case, even for independent
random matrices {Qi}i∈[n], in general we have

E[eλ
∑

iQi ] ̸=
∏
i

E[eλQi ]

since eA+B ̸= eA · eB for matrices A,B, i.e., the exponential function is non-commutative in
the field of matrices. Thus, we use the following lemma.

Lemma 17. Assuming {Qi}i∈[n] independent,

tr(E[eλ
∑n

i=1Qi ]) ≤ tr(e
∑n

i=1 logE[exp(λQi)])

This can be easily proved by the sequential application of Jensen’s inequality, given this
following Lemma:

Lemma 18 (Lieb’s inequality, Lieb 1973). For H ∈ Sd×d, if f : Sd×d 7→ R is a function such
that:

f(A) = tr(exp(H + logA)),

then f is concave.

Then we are prepared to introduce the Matrix Hoeffding and Matrix Bernstein results:

Theorem 12 (Matrix Hoeffding). Given {Qi}
iid∼ sG(Vi), E[Qi] = 0, then:

P

∥∥∥∥∥ 1n
n∑
i=1

Qi

∥∥∥∥∥
op

≥ t

 ≤ 2d exp(−nt2/(2σ2)),

where σ2 = ∥1/n
∑n

i=1 Vi∥op.
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Proof of Theorem 12.

P

(
λmax

(
1

n

n∑
i=1

Qi

)
≥ t

)
≤ inf

λ≥0
E
[
tr(eλ

∑
i Qi) ≥ t

]
e−λnt (by Matrix Chernoff)

≤ inf
λ≥0

tr(e
∑n

i=1 log E[exp(λQi)])e−λnt (by Lemma 17)

≤ inf
λ≥0

tr(e
∑n

i=1(λ
2/2)Vi)e−λnt) (by sG property)

≤ d inf
λ≥0

e(λ
2/2)n∥V ∥ope−λnt

= de−(nt2)/(2∥V ∥op).

The third step is not so trivial:

E[exp(λQi)] ⪯ eλ
2/2Vi ⇐⇒ logE[exp(λQi)] ⪯ log eλ

2/2Vi (log is matrix monotone)

⇐⇒
n∑

i=1

logE[exp(λQi)] ⪯
λ2

2

n∑
i=1

Vi (sum of PSD is PSD)

⇐⇒ tr
(
e
∑n

i=1 log E[exp(λQi)]
)
⪯ tr

(
e

λ2

2

∑n
i=1 Vi

)
. (property of trace)

In general, if A ⪯ B it is not true that eA ⪯ eB . Therefore, the last row above uses the fact that if f : R → R
is continuous and non-decreasing, then

trf(A) ≤ trf(B).

■

Theorem 13 (Matrix Bernstein). Given {Qi}
iid∼ sE(Vi, αi), then:

P(∥ 1
n

n∑
i=1

Qi∥op ≥ t) ≤ 2d exp(−nmin{ t2

2σ2
,
t

2α∗
})

where σ2 = ∥1/n
∑n

i=1 Vi∥op and α∗ = maxi αi

Proof of Theorem 11. We know that xi ∼ sE(bΣ, b), so then applying Matrix Bernstein directly gives:

P(∥Σ̂− Σ∥op ≥ t) ≤ 2d exp(−nmin{ t2

2b∥Σ∥op
,
t

2b
})

implying

∥Σ̂− Σ∥op ≲
√
b∥Σ∥op log(d/δ)

n
+
b

n
log(d/δ).

■
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5 Sparse Linear Models

In this section, we aim to develop a theory that can be applied to high-dimensional regimes
of linear models where the dimension scales with the sample size (i.e. d ≍ n or d ≫ n). To
this end, we introduce sparsity constraints to ensure consistent estimation and study efficient
solutions to the estimation problem.

We recall the basic setting of a linear model and briefly introduce the high-dimensional linear
model. First, we define some notation:

y ∈ Rn : response vector

X ∈ Rn×d : design matrix

θ⋆ ∈ Rd : ground truth

w ∈ Rn : noise vector

where

y = (y1, y2, . . . , yn)
⊤ = Xθ⋆ +w,

X = (x⊤
1 ,x

⊤
2 , . . . ,x

⊤
n )

⊤,xi ∈ Rd,i = 1, 2, . . . n, θ⋆ = (θ⋆1, θ
⋆
2, . . . , θ

⋆
d)

⊤, w = (w1, w2, . . . , wn)
⊤.

The model can also be expressed in scalar form as follows:

yi = ⟨xi, θ⋆⟩+ wi for i = 1, 2, . . . , n.

Note. At this level of generality, we have not imposed some structure on (y,w,X). In what
follows we will prove two sets of results: deterministic results and stochastic results. ♦

Our objective is to estimate θ⋆ given (X,y). In the classical asymptotic setting, the dimen-
sion d is fixed and we consider the regime where n→ ∞. In the high dimensional regime, n
and d can be both large and in particular, d can be much larger than n. The least squares
estimator does not admit unique solution in the regime where d ≫ n, therefore, ad-
ditional structural assumptions on θ⋆ and X are required for consistent estimation of θ⋆

in high-dimensional linear models. One simple assumption that can be imposed on a linear
model is a sparsity assumption.

Definition 33 (Support of a vector). For a given θ ∈ Rd, the support of θ is defined as
follows:

S(θ) :=
{
j ⊆ [d] : θj ̸= 0

}
.

Furthermore, define the set of vectors whose support is smaller than s by

B0(s) :=
{
θ ∈ Rd : |S(θ)| ≤ s

}
.

Note. In words, the ball B0(s) contains all the vectors with no more than s non-zero elements.
Note that this is not a ball in the traditional sense as the ℓ0 norm is not a norm. The ℓ0−norm
is defined as

∥x∥0 :=
d∑
i=1

1(xi ̸= 0)
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and it is not a norm because it does not satisfy the triangle inequality. To see this take d = 2
and x = (1, 1)⊤ and y = −x. Then, ∥x + y∥0 = ∥0∥0 = 2 but ∥x∥0 + ∥y∥0 = 0. Indeed,
because the ℓ0−norm is not a norm, B0(·) is not compact, indeed it is an unbounded set (e.g.,
if d = 2 it contains the whole x and y axes). ♦

Note. Typically, S(θ⋆) is unknown, but often assume that |S(θ⋆)| ≤ s, where s is the sparsity
level. Note that for known S(θ⋆), the condition n ≥ s is sufficient for obtaining a unique
solution to

argmin
θs∈S(θ⋆)

∥y −Xsθs∥22

where Xs = (x⊤
1,S ,x

⊤
2,S , · · · ,x⊤

n,S)
⊤ ∈ Rn×s, and xi,S denotes the s-length vector that contains

xi,j where j ∈ S. However, in the case where S(θ⋆) is unknown, more than s samples are
required to ensure consistent estimation. In later lectures we will show that in fact, under
certain conditions, O(s log(d/s)) samples are required to achieve consistent estimation. These
samples are more than s, but still way less than d. The regime we will study can be summarized
as follows:

s (sparsity level) ≪ n (sample size) ≪ d (ambient dimension).

♦

Under a sparsity assumption, we assume that θ⋆ ∈ B0(s) for some s. In words, we are
assuming that the ground truth is sparse.

5.1 Convex Relaxation of Sparsity Constraint and Basis Pursuit

Before we delve into the setting with noise (i.e. y = Xθ⋆+w), we first consider the noiseless
setting. In this setting we assume the true model to be

y = Xθ⋆ ∈ Rn,

where θ⋆ ∈ Rd is s-sparse (|S(θ⋆)| ≤ s).

Notice that when d > n, there are infinitely many solutions that satisfy y = Xθ. In particular,
all θ ∈ θ⋆ + Null(X) are valid solutions, where Null(X) :=

{
∆ ∈ Rd : X∆ = 0

}
is the null

space of X. The set of feasible solutions would be θ⋆ + Null(X) and, typically, Null(X) will
be a dense set.4

We can first consider the problem of minimizing the ℓ0-norm

min
θ∈Rd

∥θ∥0, s.t. y = Xθ (5.1)

Unfortunately, it is computationally challenging to solve this optimization problem due to
the fact that the objective function is non-convex. For example, let θ̂ be the minimizer of
problem (5.1). Now, one can consider searching over all possible subsets S ⊆ [d], and checking

4Let (X, d) be a metric space. A set Y ⊆ X is called dense in X if for every x ∈ X and every ε > 0, there
exists y ∈ Y such that d(x, y) < ε.
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whether y = XSθS. However, if ∥θ̂∥0 = s, this requires checking at least
∑s

k=1

(
d
k

)
≈ ds

subsets before finding the optimal solution θ̂, which is computationally expensive. To address
this issue, we relax the sparsity constraint to convert this problem into a convex optimization
problem. We can consider the following ℓ1-norm optimization problem instead.

min
θ∈Rd

∥θ∥1, s.t. y = Xθ (5.2)

This problem is called basis pursuit and was introduced in Chen, Donoho and Saunders
(1998, 2001), Tibshirani (1996).5 Solutions to this problem have been studied by numerous
researchers over the decades; the basis pursuit problem is a convex problem, thus it can
be re-formulated as a linear programming problem, which can be solved efficiently.

Note. The use of ℓ1−norm is justified by the fact that ℓp−norms are convex as long as p ≥ 1
and the ℓ1−norm is the closest one to the ℓ0−norm. ♦

5.1.1 A Sufficient Condition for Exact Recovery in the Noiseless Setting

Now that we have relaxed our sparsity constraint, a natural question that arises is the follow-
ing: under what conditions can we obtain θ⋆ from solving problem (5.2) instead of problem
(5.1). In particular, we aim to address the following question: what are sufficient (or neces-
sary) conditions such that we have exact recovery, that is

argmin
θ∈Rd

{∥θ∥1 : y = Xθ} = θ⋆.

Formally, fix θ⋆,S(θ⋆) ≡ S. What are the conditions on X ∈ Rn×d under which

θ̂ := argmin
θ

{∥θ∥1 : Xθ⋆ = Xθ} = θ⋆, (5.3)

or, equivalently,
∀ θ ∈ θ⋆ +Null(X) \ {0}, ∥θ∥1 > ∥θ⋆∥1, (5.4)

where the ℓ1-norms of θ and θ⋆ are only equal if θ = θ⋆. Note that condition (5.4) is ruling
out all the other possible solutions by requiring them to have a higher loss than the ground
truth θ⋆. To analyze this problem more concretely, we can study the tangent cone of the
ℓ1-ball at θ

⋆. The tangent cone of the ℓ1-ball at θ
⋆ is given by

T (θ⋆) := {∆ ∈ Rd : ∥θ⋆ + t∆∥1 ≤ ∥θ⋆∥1 for some t > 0}, (5.5)

where ∆ characterizes the direction and t the scale of the vectors in the set. We can see that
the tangent cone characterizes all the “tilts” to θ⋆ in the ambient space (Rd) that would yield
a loss not larger than ∥θ⋆∥1. Intuitively, we would like none of such “titls” to belong to the
nullspace of X and, thus, be a solution of (5.2). In other words, we would like θ⋆ + T (θ⋆)

5The pre-print version of these papers appeared in 1994. Lasso is the acronym for least absolute shrinkage
and selection operator.
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to intersect with θ⋆ + Null(X) only at θ⋆. Then, condition (5.4) is equivalent to both the
following conditions

θ⋆ +Null(X) ∩ θ⋆ + T (θ⋆) = {θ⋆} (5.6)

Null(X) ∩ T (θ⋆) = {0}. (5.7)

Notice that conditions (5.6) and (5.7) are equivalent since θ⋆ + Null(X) is an affine space
passing through θ⋆. The following diagram in 2-dimensions aims to provide some intuition.

Figure 2: In this figure, d = 2, n = 1, and dim(Null(X)) = 1. The purple line gives the favorable
case in which the set θ⋆+Null(X) only intersects the tangent cone ( green lines) at θ⋆. The red line
gives the unfavorable case in which the set θ⋆ +Null(X) passes through the tangent cone.

The cone T (θ⋆) allows us to characterize that portion of the space that should not be in the
feasible space of solutions. Indeed, whenever the feasible space intersects with the interior of
T (θ⋆) the minimizer of ∥y −Xθ∥1 ̸= θ⋆.

Let ∆S = (∆i)i∈S and ∆Sc is defined similarly. In general, if S(θ⋆) = S ⊆ [d], then

T (θ⋆) = {∆ ∈ Rd : ∥∆Sc∥1 ≤ ∥∆S∥1, ∆iθ
⋆
i ≤ 0, ∀ i ∈ S} (5.8)

is equivalent to (5.5). The following example shows this in a particular case. We won’t give
a formal proof of this equivalence.

Example 49. In Figure 2, we have d = 2,S = {2}, and θ⋆ = (0, 1)⊤. The equation of the
cone is then given by

T (θ⋆) = {∆ ∈ R2 : ∥(0, 1) + t∆∥1 ≤ ∥(0, 1)∥1, for some t > 0}
= {(∆1,∆2) : |t∆1|+ |1 + t∆2| ≤ 1, for some t > 0}
= {(∆1,∆2) : |∆1| ≤ |∆2|, ∆2 ≤ 0}.
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♣

Notice that T (θ⋆) depends on both the support S(θ⋆) and sign(θ⋆i ) for all i ∈ S(θ⋆).

The intuition from Figure 2 leads us to a sufficient condition for exact recovery. Define

C(S) := {∆ ∈ Rd : ∥ ∆Sc︸︷︷︸
∈R|Sc|

∥1 ≤ ∥ ∆S︸︷︷︸
∈R|S|

∥1} (5.9)

C(S) is a superset of T (θ⋆) for S(θ⋆) = S, so a sufficient condition for exact recovery is

C(S) ∩ Null(X) = {0},

since this condition implies conditions (5.6) and (5.7). Therefore,

T (θ⋆) ∩ Null(X) = {0}., (necessary condition)

C(S) ∩ Null(X) = {0}. (sufficient condition)

Now, we can define a condition on X known as the restricted null space property, which will
lead us to a theorem giving a precise statement for when condition (5.3) is satisfied.

Definition 34. Let X ∈ Rn×d and let S ⊆ [d]. Then, X satisfies the Restricted Nullspace
Property with respect to S (abbreviated RN(S)), if

C(S) ∩ Null(X) = {0}.

Theorem 14. The following two statements are equivalent:

1. For all θ⋆ ∈ Rd with S(θ⋆) = S,

θ⋆ = θ̂ := argmin
θ

{∥θ∥1 : y = Xθ}

where θ⋆ is the unique minimizer.

2. X satisfies the RN(S), i.e.

Null(X) ∩ C(S) = {0}.

Proof. First, we show that (2) implies (1). Assume that X satisfies the restricted null space property. Let

θ̂ ∈ argminθ{∥θ∥1 : y = Xθ}. Define ∆̂ := θ̂ − θ⋆ to be the error vector. Note that ∆̂ ∈ Null(X) because

both θ̂ and θ⋆ are in the feasible space. Since ∆̂ ∈ Null(X), it suffices to show that ∆̂ ∈ C(S). We have the
following sequence of equations:

∥θ⋆S∥1 = ∥θ⋆∥1 (sparsity of θ⋆)

≥ ∥θ̂∥1 (θ̂ is optimal)

= ∥θ⋆ + ∆̂∥1 (definition of ∆̂)

= ∥θ⋆S + ∆̂S∥1 + ∥θ̂⋆Sc
+ ∆̂Sc∥1

= ∥θ⋆S + ∆̂S∥1 + ∥∆̂Sc∥1 (sparsity of θ⋆)
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≥ ∥θ⋆S∥1 − ∥∆̂S∥1 + ∥∆̂Sc∥1. (reverse triangle inequality)

Rearranging the last inequality implies that ∥∆̂Sc∥1 ≤ ∥∆̂S∥1 and thus we have shown that ∆̂ ∈ C(S) ∩
Null(X). By our assumption, this implies that ∆̂ = 0 and θ̂ = θ⋆.

Now, assume (1) and we will show (2). Let θ̃ ∈ Null(X) \ {0}. It suffices to show that θ̃ ̸∈ C(S). Let

θ⋆ =
(
θ̃S 0

)⊤
be S-sparse. By (a), we know that

argmin
β

{
∥β∥1 : Xβ = X

(
θ̃S
0

)}
=

(
θ̃S
0

)
.

and this is a unique minimizer. Since θ̃ ∈ Null(X) so

X

(
0

−θ̃Sc

)
= X

(
θ̃S
0

)
,

this implies that ∥∥∥(θ̃S
0

)∥∥∥
1
<
∥∥∥( 0

−θ̃Sc

)∥∥∥
1
,

which in turn implies that ∥θ̃S∥1 < ∥θ̃Sc∥1. Thus, θ̃ ̸∈ C(S). ■

In summary, a matrix X satisfying the restricted nullspace property with respect to S(θ⋆) is
a sufficient condition for the exact recovery of θ̂, which solves problem (5.1) (the basis pursuit
problem). In later lectures, we will show that random matrices with certain distributions
satisfy the restricted null space property as long as n ≳ s log(d/s).

5.2 Sufficient Conditions for RN(S)

We now ask ourselves what are the sufficient conditions on our design matrix X to ensure
that it is RN(S). Let X ∈ Rn×d. If the quantity

sup
v∈C(S),∥v∥2=1

∣∣∣∣〈v,(X⊤X

n
− Id

)
v

〉∣∣∣∣ ,
is small, then

1

n
∥Xv∥22 =

1

n
⟨v,X⊤Xv⟩ ≈ ∥v∥22 > 0, ∀ v ∈ C(S)

which implies
Null(X) ∩ C(S) = {0}.

So we want Γ = (X⊤X − Id) to be small in some sense. We are going to propose two
alternative ways of looking at Γ. As such, we will have two different sufficient conditions to
guarantee that X is RN(S). let’s first define two measures of how small Γ is:

1. Pairwise incoherence

δpw(X) := sup
i ̸=j

|Γ| = sup
i ̸=j

∣∣∣∣ 1nX⊤X− Id

∣∣∣∣ .
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2. Restricted isometry constant

δs(X) := max
|S|≤s

∥∥∥∥ 1nX⊤
SXS − Id

∥∥∥∥
op

.

In general, it is true that

δpw(X) ≤ δs(X) ≤ s · δpw(X), ∀ s ∈ [d].

Pairwise incoherence is harder to prove.

Proposition 42 (Sufficient Condition for RN(S)). X satisfies RN(S),∀ |S| ≤ s, s ∈ [d] if
any of the following holds

1. δpw(X) < 1
3s
,

2. δ2s <
1
3
.

5.3 Noisy Linear Models

We now consider a linear model of the form

y = Xθ⋆ +w,

with w ∈ Rn,X ∈ Rn×d. The typical goal is to fin θ̂ such that ∥θ̂ − θ⋆∥2 is small. When
n > d we can simply use OLS, but when n < d, LASSO is a natural choice:

θ̂ := argmin
θ∈Rd

1

2n
∥y −Xθ∥22 + λn∥θ∥1. (λ form)

The problem above can be expressed in two equivalent ways

θ̂ := argmin
θ∈Rd

1

2n
∥y −Xθ∥22, s.t. ∥θ∥1 ≤ R (ℓ1−norm)

and

θ̂ := argmin
θ∈Rd

∥θ∥1, s.t.
1

2n
∥y −Xθ∥22 ≤ b2. (error form)

Definition 35 (Restricted Eigenvalue Property). We say that X satisfies RE(S, (k, α)) if

1

n
∥X∆∥22 ≥ k∥∆∥22, ∀∆ ∈ Cα(S),

where
Cα(S) = {∆ ∈ Rd : α∥∆S∥1 ≥ ∥∆Sc∥1}.
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Note. The name of RE comes from the fact that it implies that all the eigenvalues of X are
larger than k. ♦

Corollary 6. If α = 1, k > 0, then RE implies RN.

Proposition 43. If |S(θ⋆)| ≡ S and |S| = s and X satisfies RE(S, (k, 3)), then:

1. λ−form. If λn ≥ 2∥n−1X⊤w∥∞ then

∥θ̂ − θ⋆∥2 ≤
3

k

√
sλn.

2. ℓ1−norm form. Take R = ∥θ⋆∥1. then

∥θ̂ − θ⋆∥2 ≤
4

k

√
s

∥∥∥∥X⊤w

n

∥∥∥∥
∞
.

3. Error form. If b2 ≥ ∥w∥22/2n, then

∥θ̂ − θ⋆∥2 ≤
4

k

√
s

∥∥∥∥X⊤w

n

∥∥∥∥
∞
+

2√
k

√
b2 − ∥w∥22

n
.
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