
A Causal Framework for Evaluating Deferring
Systems

Filippo Palomba*
Princeton University

fpalomba@princeton.edu

Andrea Pugnana*
University of Pisa

andrea.pugnana@di.unipi.it
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Abstract

Deferring systems extend supervised Machine Learning (ML) models with the
possibility to defer predictions to human experts. However, evaluating the impact
of a deferring strategy on system accuracy is still an overlooked area. This paper
fills this gap by evaluating deferring systems through a causal lens. We link the
potential outcomes framework for causal inference with deferring systems. This
allows us to identify the causal impact of the deferring strategy on predictive ac-
curacy. We distinguish two scenarios. In the first one, we can access both the
human and the ML model predictions for the deferred instances. In such a case,
we can identify the individual causal effects for deferred instances and aggregates
of them. In the second scenario, only human predictions are available for the de-
ferred instances. In this case, we can resort to regression discontinuity design to
estimate a local causal effect. We empirically evaluate our approach on synthetic
and real datasets for seven deferring systems from the literature.
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1 Introduction

Machine Learning (ML) models are increasingly being used to support decision making in many
high-stakes and socially sensitive domains. In such settings, wrong predictions can be harmful. To
control for model mistakes, an extension of supervised learning allows ML models to abstain from
providing a prediction and defer the prediction to a human expert. Such an extension is known as
“learning to defer” (LtD) [1] or “learning under triage” [2]. The extended models, called deferring
systems, aim at obtaining the best from the combination of AI and human expert predictions.

The LtD research field is blooming, with novel approaches continuously appearing (e.g., [3, 4, 5,
6, 7, 8]). However, little attention has been devoted to evaluating the impact of deferring. Most
works evaluate deferring systems by looking at the final accuracy obtained by the human-AI team.
Although suitable for ML practitioners, this accuracy-based view on evaluation is narrow. Policy-
makers are interested in understanding the causal effect of introducing a deferring system within a
high-stake decision-making process [9].

Consider the following two examples: (Ex1) an online platform introduces a new deferring system
to moderate its content for hate speech, meaning most content moderation is still automated, but a
small part is now handled by humans; (Ex2) a hospital introduces a new deferring system for the
diagnosis of a disease, meaning that part of the cases will still be handled by medical doctors, but
another part will be predicted by an ML model. After some months, the stakeholders of the online
platform (in Ex1) may ask the developers of the deferring system to quantify the causal effects of
deferring to humans instead of automatic content moderation. Similarly, the stakeholders of the
hospital (in Ex2) may ask for the causal effects of deferring to the ML model instead of full human
decision-making. Both examples demand for a causal inference approach [10], where the goal is to
estimate the causal effect of a variable on another one [11].

Causal inference has a long tradition within policy evaluation [12], and we build on it for evaluating
deferring systems. We link deferring systems with the causal inference framework of potential out-
comes [13, 14] by mapping concepts from the former to the latter. We distinguish two scenarios. In
the first one, we can access the ML model predictions for both deferred and non-deferred instances,
and the human predictions only for deferred ones. Example Ex1 belongs to such a scenario. In this
context, various causal quantities of deferring to humans can be readily identified and estimated. In
the second scenario, we can access the ML model predictions only for the non-deferred instances
and the human predictions only for the deferred ones. In this context, we rely on Regression Dis-
continuity (RD) design [15] to identify and estimate a local causal effect, where local refers to the
boundary of the deferring decision. Such a local causal effect covers both the causal effect of defer-
ring to humans and the one of deferring to the ML model, as they are one the opposite of the other.
Example Ex2 belongs to such a scenario.

The contributions of this paper are: (i) we frame the evaluation of deferring systems as a causal infe-
rence problem using the potential outcome framework; (ii) we investigate two scenarios, and for
each, we show which causal effects can be identified and estimated; and (iii) we evaluate the pro-
posed approach on five datasets, including a synthetic one and four real-world ones, and on seven de-
ferring systems from the literature. The paper first introduces causal inference and deferring systems
in Section 2. The two frameworks are bridged in Section 3 and two scenarios of causal estimation
are investigated. We report experiments in Section 4. Finally, we summarize and conclude.

2 Background and related work

2.1 Causal inference

The core task of causal inference is to estimate the causal effect of a binary treatment random
variable D ∈ {0, 1} on another discrete or continuous outcome random variable O ∈ O. Let us
consider a random sample {Di, Oi}ni=1 of i.i.d. variables, where the subscript i denotes a specific
instance/unit i. We denote realizations of such random variables with lowercase letters. A formal
definition of a causal effect is given by the Neyman-Rubin causal framework [13, 14] through the
notion of potential outcomes. A potential outcome O(d) ∈ O, d ∈ {0, 1} is a random variable
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representing the value that the outcome variable O would take when the treatment variable is set to
d. Accordingly, the (individual) causal effect of D on O for unit i is defined as τi = Oi(1)−Oi(0).1

If we were able to observe the joint distribution of (O(0), O(1)), then the causal effect of each unit
could be readily estimated from a dataset of observations. However, for each unit i, only one among
Oi(1) and Oi(0) can be typically observed. This is called the “fundamental problem of causal
inference” [17]. It occurs since the observed outcome Oi and the potential outcomes are related
by Oi = Di · Oi(1) + (1 − Di) · Oi(0). In other words, if a unit i is assigned to the treatment
(Di = 1), then the potential outcome Oi(0) is counterfactual in nature, and we would not observe
it. Symmetrically, Oi(1) is counterfactual for units not assigned to treatment (Di = 0). For this
reason, researchers are often interested in less granular causal quantities, such as:

τATE := E[O(1)−O(0)], and τATT := E[O(1)−O(0) | D = 1], (1)

known as the average treatment effect (ATE) and the average treatment effect on the treated (ATT),
respectively2. Despite being more general than the individual causal effect, the causal estimands in
(1) cannot be estimated from a dataset of observations unless some assumptions are imposed, as the
distribution of (D,O(0), O(1)) is (i) unknown and (ii) generally impossible to learn from the data
because of the fundamental problem of causal inference. Several methodologies have been proposed
to use context-dependent knowledge to model (D,O(0), O(1)) (see [12] for a recent review).

The RD design [15] is one of such methodologies. In the canonical RD design, units are assigned
a score V ∈ R, known as running variable, and ranked according to it. A unit i whose running
variable Vi is greater or equal than a cutoff value ξ is assigned to treatment, otherwise it does not
receive the treatment. It follows that the assignment to treatment is known, deterministic, and can
be described by Di = 1{Vi ≥ ξ}. This knowledge of the assignment process can be exploited to
identify and estimate causal effects. Indeed, if we can assume that units in the vicinity of the cutoff
are similar, then the RD design can be used to identify:

τRD := E[O(1)−O(0) | V = ξ].

This quantity can be interpreted as a version of τATT “local” at the cutoff. The above heuristics was
formalized by Hahn et al. [18] in terms of potential outcomes through the following assumption.
Assumption 1 (RD-continuity). The expected potential outcomes are continuous at the cutoff,
namely, there exist:

lim
v→ξ

E[O(0) | V = v] and lim
v→ξ

E[O(1) | V = v].

In words, Assumption 1 requires the average potential outcomes not to change abruptly in a small
neighbourhood around the cutoff; hence their left and right limits exist and are equal. Under As-
sumption 1, τRD can be identified from the data, as the next theorem shows.
Theorem 1 (Theorem 3 from [18]). Let Assumption 1 hold. Then:

lim
v→ξ+

E[O | V = v]− lim
v→ξ−

E[O | V = v] = τRD.

Theorem 1 is “local” in nature, as it shows that the average treatment effect on the treated can be
identified for a specific sub-population of units, namely those with V = ξ.

2.2 Deferring systems

Let X ⊆ Rq be a q-dimensional input space, Y = {1, . . . ,m} be the target space and P (X, Y ) be
the probability distribution over X × Y . Given a hypothesis space F of functions that map X to Y ,
the goal of supervised learning is to find the hypothesis f ∈ F that minimizes the risk:

R(f) = E[l(f(X), Y )] =

∫
X×Y

l(f(x), y)dP(x, y),

where l : Y × Y → R is a user-specified loss function and P is the probability measure linked to
the joint distribution P over the space X × Y . Here, f represents an ML model (a.k.a. a predictor).

1We make the stable unit treatment value assumption (SUTVA) [16]. It requires each unit’s potential out-
come not to depend on the treatment assignment of other units, ruling out interference between units.

2The subscripts of Oi and Di can be omitted in the expectation since variables are i.i.d.
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Because P (X, Y ) is generally unknown, it is typically assumed that we have access to a set of
realizations, called a training set, of an i.i.d. random sample over P (X, Y ). The training set is
used to learn a predictor f̂ , such that f̂ ∈ argminf∈F R̂(f), with R̂(f) denoting the empirical
counterpart of the risk R(f) over the training set.

Since the predictor f̂ can make mistakes, one can extend the canonical setting presented above by
allowing the ML model to defer difficult cases to another predictor. Here, we consider a human
expert as another predictor h : Z → Y , where Z is possibly a higher dimensional space than X . To
keep the notation simple, we will consider the case where Z = X . The mechanism that determines
who provides the prediction is called the policy function (or rejector/deferring strategy) and can be
formally defined as a (binary) mapping g : X → {0, 1}. We define the deferring system ϑ, i.e. the
human-AI team, as a triplet (f, g, h), such that:

ϑ(x) = (f, g, h)(x) =

{
f(x) if g(x) = 0

h(x) if g(x) = 1

meaning, if g(x) = 0, the prediction is provided by the ML model, while if g(x) = 1, the human
expert takes care of the prediction. We assume a single human expert to defer the prediction to, thus
excluding generalizations that pick which expert to defer to [6, 19]. Let G be the set of all the policy
functions and L(f, g) the expected risk of the whole deferring system, namely:

L(f, g) =
∫
X×Y

lML (f(x), y) (1− g(x)) dP(x, y) +

∫
X×Y

lH(h(x), y)g(x)dP(x, y), (2)

with lML (resp., lH ) referring to the loss associated with the ML model (resp., human expert). The
goal then becomes finding the best f ∈ F and g ∈ G such that:

min
f∈F,g∈G

L(f, g) s.t. E[g(X)] ≤ 1− c,

where c ∈ [0, 1] is a target coverage, i.e., a user-specified fraction of instances for which the ML
model is selected to make predictions.

Most methods design the deferring strategy through a reject score function k : X → R, which
estimates whether the human expert prediction is more likely to be correct than the one of the ML
model [7]. High values of k(x) correspond to cases where the human expert is preferable, i.e., it
is more likely to provide a correct prediction. Hence, we can set a threshold κ over k(x) to define
the policy function as g(x) = 1{k(x) ≥ κ}. Okati et al. [2] show that such a thresholding strategy
is optimal. In practice, one can estimate such a threshold in various ways. For instance, if there
are no coverage constraints, a linear search procedure can be run by selecting the κ that maximizes
accuracy over a validation set [7]. Otherwise, one can consider a coverage-calibration procedure by
setting κ as the cth -percentile of the reject score values over a validation set [20], as shown in Figure
1. In order to highlight the relationship between κ and c, we denote the estimated threshold for a
target coverage c as κc, i.e., κc is such that E[1{k(X) ≥ κc}] = (1− c).

2.3 Related work

By viewing the introduction of human-AI teams as an intervention in a ML-based or in a human-
based decision flow, our work bridges causal inference for policy evaluation with deferring systems.
To the best of our knowledge, the only related work is due to Choe et al. [21], who estimate the
accuracy of abstaining classifiers (which do not account for deferring to human experts) on the
abstained instances under the assumption that the abstention policy is stochastic. Such an assumption
is impractical in the context of deferring systems. See Appendix A for additional related work.

Policy evaluation. Causal inference methods are commonly used to evaluate the effects of treat-
ments/policies and, thus, inform policymakers [12]. Randomized control trials (RCT), i.e., exper-
iments that assign units to treatment randomly, are the gold standard for inferring average causal
effects (such as τATE) in many fields including healthcare [22], education [23], and finance [24].
When it is not possible to rely on RCTs, e.g., it is not ethical or too costly to run an experiment,
one can resort to other techniques using observational data [11, 25]. The RD design has been used
to assess the effectiveness of treatments in several fields, such as healthcare [26, 27, 28], criminal
behavior [29], education [30, 31, 32, 33], public economics [34, 35, 36], and corporate finance [37].
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Figure 1: In blue, the (c)%
of instances (i.e., those with
k(x) < κc) assigned to the
ML model; in orange, the (1 −
c)% instances (i.e., those with
k(x) ≥ κc) the human predicts.

Figure 2: Scenario 1 assump-
tions: dashed lines are unob-
served values and thick lines ob-
served ones. The coloured area
represents where the effects can
be estimated (i.e., k(x) ≥ κc).

Figure 3: Scenario 2 assump-
tions: dashed lines are unob-
served values and thick lines
observed ones. We can esti-
mate τRD at the cutoff value
(i.e., k(x) = κc).

Table 1: Deferring systems under the Potential Outcome lens.
Potential Outcome Deferring Systems

running variable Vi Ki

cutoff ξ κc

treatment Di Gi

outcome Oi Ti

potential outcomes Oi(d), d ∈ {0, 1} Ti(g), g ∈ {0, 1}
τi Oi(1)−Oi(0) Ti(1)− Ti(0)

Deferring systems applications. In recent years, deferring systems have been deployed to build
human-AI teams in different settings. For instance, Van der Pias et al. [38] present a deferring system
for sleep stage scoring, which can be used to allow physicians to focus on critical patients. Cianci
et al. [39] adopt selective classification [40] for uncertainty self-assessment of a credit scoring ML
model, with the purpose of informing the human decision maker. Bondi et al. [41] study a deferring
system for evaluating the presence of animals in photo traps, showing that the performance of the
deferring system is influenced by how the deferral choice is communicated to humans. We refer to
Punzi et al. [42] for a recent survey on hybrid decision-making.

3 Evaluating deferring systems

Problem statement. We consider the problem of measuring the causal contribution, in terms of
accuracy, of deferring the prediction to a human expert in a given deferring system based on a reject
score function. For this, we assume a given set of realizations Dn = {(xi, yi)}ni=1, called a test set,
of an i.i.d. random sample {(Xi, Yi)}ni=1 over P (X, Y ).

Methodology. We tackle the problem above by bridging deferring systems with the potential out-
come framework. The key observation is that the reject score maps to a running variable, and the
accuracy of the ML model and of the human expert map to the potential outcomes.

Table 1 provides a mapping of the role of each variable of a deferring system into the potential
outcomes framework. We have that: (i) the reject score Ki = k(Xi) is the running variable; (ii)
the threshold κc ∈ K is the cutoff; (iii) the policy function Gi = 1{Ki ≥ κc} is the treatment
assignment: if Gi = 1, the human expert provides the prediction h(Xi), otherwise the ML model
provides the prediction f(Xi); (iv) the outcome Ti = 1{ϑ(Xi) = Yi} is an indicator function
for whether the prediction of the deferring system is correct, i.e., the prediction equals the target
variable Yi or not; (v) correctness of ML model Ti(0) = 1{f(Xi) = Yi} and of the human expert
Ti(1) = 1{h(Xi) = Yi} are the potential outcomes, and they are connected to the outcome Ti

as follows: Ti = Gi · Ti(1) + (1 − Gi) · Ti(0); finally, (vi) the individual causal effect τi is the
difference between Ti(1) and Ti(0).

In the following, we distinguish two scenarios, which allow for the identification of causal effects. In
both scenarios, we assume that the human predictions h(Xi) can be accessed only for the deferred
instances, i.e., if Gi = 1.
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Scenario 1. The ML model predictions f(Xi) can be accessed for the whole random sample.

This scenario covers cases in which the ML model can be called without any cost or side effects.
For example, this is the case when the development team runs an internal evaluation of the deferring
system. In this scenario, we can identify the causal effects of deferring to the human (Section 3.1).
Example Ex1 from the introduction falls under this scenario.
Scenario 2. The ML model predictions f(Xi) can be accessed only for the non-deferred instances,
i.e., if Gi = 0.

This scenario covers cases in which model invocation is costly (e.g., due to a pay-per-use fee),
may have side effects, or discloses sensitive data. For example, in an external audit, the owner of
the deferring system may be reluctant to share ML predictions for deferred instances: since these
predictions are not the system’s actual output, releasing them might not be legally binding. In
this scenario, we can identify the causal effects of deferring to the human locally to the deferring
threshold (Section 3.2). Moreover, this scenario is also able to cover the cases where the intervention
to be causally evaluated is the introduction of the ML model in a fully human decision-making
process, as in example Ex2 from the introduction. In example Ex2, we are not interested in the
causal effect of deferring from the ML model to human expert, but rather of deferring from the
human expert to the ML model. Therefore, Scenario 1 does not apply if we reverse the role of the
ML model and the human expert, because we cannot assume to have the human expert decisions for
cases assigned to the ML model. However, since the local causal effect of deferring from the human
expert to the ML model is the opposite of the one of deferring from the ML model to the human
expert, we can rely on Scenario 2 for estimating it.

3.1 Scenario 1: deferring systems as an almost perfect causal inference design

In this scenario, we are in the ideal situation in which both potential outcomes are observed for the
deferred instances (Gi = 1), as both the ML model prediction f(Xi), and the human prediction
h(Xi), are available. Let n be the size of the test set Dn, then, the following holds.
Proposition 1. Let Scenario 1 hold. Then, for each i ∈ [1, n] such that Gi = 1:

τi = Ti(1)− Ti(0) = 1{h(Xi) = Yi} − 1{f(Xi) = Yi}.

Proof. Identification is immediate because both potential outcomes are observed for a unit i ∈ [1, n]
that has also been evaluated by a human (Gi = 1). In particular, Ti(0) = 1{f(Xi) = Yi} is
observable because we are under Scenario 1 and Ti(1) = 1{h(Xi) = Yi}) since Gi = 1.

Because we can directly compute the most granular causal effect on deferred instances, τi, we can
also retrieve less granular quantities. For instance, if we average the τi over the population of
deferred units, we obtain the average treatment effect on the deferred, τATD, which is the deferring
systems’ equivalent of τATT in (1). This causal estimand can be identified as follows.
Proposition 2. Let Scenario 1 hold. Then:

τATD = E[T (1)− T (0)|G = 1] = E [1{h(X) = Y } | G = 1]− E [1{f(X) = Y } | G = 1] .

The proof can be found in Appendix B. τATD allows us to measure the (average) effect on accu-
racy due to the “intervention” of deferring to a human the prediction for the deferred instances.
Intuitively, τATD estimates what would be the average percentage increase in accuracy for deferred
instances if the human predicts instead of the ML model. This effect motivates the introduction of
a deferring system to stakeholders. Policymakers can use it to assess the impact of such systems.
The estimation of τATD is straightforward and can be conducted via a simple difference-in-means
estimator of the form:

τ̂ATD =
1

n1

∑
i∈[1,n]:g(xi)=1

[ti(1)− ti(0)] =
1

n1

∑
i∈[1,n]:g(xi)=1

[1{h(xi) = yi} − 1{f(xi) = yi}] ,

where n1 := |{i ∈ [1, n] : g(xi) = 1}| is the number of deferred instances in the test set.

Furthermore, any aggregated metrics of the individual causal effects on the deferred can be estimated
in this setting. Another interesting quantity is:

τATD(k) = E[T (1)− T (0) | G = 1,K = k], k ≥ κc,

7



Table 2: Datasets and baselines details (epochs - ep., learning rate - lr, optimizer - op.).
dataset n |Y| human network model pre-trained used in hyper-parameters
synth 20k 2 synthetic linear no [7] ep. = 50; lr = 1e− 2; op. = Adam

cifar10h 10k 10 separate annotator WideResNet [44] yes [7, 8] ep. = 150; lr = 1e− 3; op. = AdamW
galaxyzoo 10k 2 random annotator ResNet50 [45] yes [2, 5, 7] ep. = 50; lr = 1e− 3; op. = Adam
hatespeech 25k 3 random annotator FNN on SBERT embeddings [46] yes [2, 5, 7, 8] ep. = 100; lr = 1e− 2; op. = Adam

xray-airspace 4.4k 2 random annotator DenseNet121 [47] yes [7] ep. = 3; lr = 1e− 3; op. = AdamW

which measures how the average difference in predictive accuracy changes as the coverage varies
above the threshold κc. Notice that E[T (1) − T (0) | G = 1,K = k] = E[T (1) − T (0) | K = k]
since k ≥ κc if and only if G = 1. Given k ≥ κc, a natural estimator of τATD(k) would be a non-
parametric local polynomial kernel regression around k. Local polynomial kernel regressions [43]
fit a p-th order polynomial locally at k via weighted least squares, where the weight of each instance
is determined by the shape of the kernel and is non-increasing in the distance between k and k(xi).

3.2 Scenario 2: deferring systems as an RD design

If we cannot access the ML model predictions for the deferred instances, we can still exploit the
additional knowledge on the policy function to estimate causal quantities. In particular, we can
exploit the fact that deferring systems can be interpreted as an RD design to compute a local version
of τATD. In this scenario, τRD answers the following question: for a fixed coverage value c and the
corresponding reject score threshold κc, what would be the increase in accuracy if we let the human
expert predict instead of the ML model for the instances with reject score close to κc? Such an
interpretation is possible if Assumption 1 holds. If we have reasons to believe that small changes of
the reject-score threshold κc do not abruptly change the expected predictive accuracy of the human
expert and of the ML model, then Assumption 1 is satisfied.
Proposition 3. Let Scenario 2 hold and let Assumption 1 be satisfied for the deferring system. Then

lim
k→κ+

c

E[T | K = k]− lim
k→κ−

c

E[T | K = k] = τRD,

where τRD := E[T (1)− T (0) | K = κc].

The proof can be found in Appendix B. Proposition 3 allows us to evaluate the causal effect of
deferring to a human in a decision flow even if we do not have access to ML predictions for the
deferred instances. Indeed, τRD readily quantifies the gain in predictive accuracy of having the human
expert predicting in place of the ML model at the cutoff. The local nature of τRD motivates the use of
local non-parametric polynomial kernel regression to estimate E[T | K = κc] from the left and the
right of the cutoff, thus obtaining an estimator τ̂RD of τRD. We point out that τRD can also be computed
under Scenario 1. In Appendix C, we discuss additional caveats, including how to set the optimal
coverage, how to check if Assumption 1 holds, and the uncertainty due to the ML model estimation.

4 Experimental evaluation

We experimentally address three questions:

Q1: What causal effects of deferring can be estimated under Scenario 1 in a controlled setting?

Q2: What causal effects of deferring can be estimated under Scenario 2 in a controlled setting?

Q3: What are the causal effects of deferring on real datasets?

To address Q1 and Q2, we consider a simulated setting to control the data-generating process. We
then address Q3 by considering real-world datasets, discussing in this section the results for Sce-
nario 1. Complete results for synthetic and real data are reported in Appendix D.2. All experimental
software is available at https://github.com/andrepugni/PODS. Experimental hardware speci-
fications and carbon footprint are reported in Appendix D.1.4.

4.1 Experimental settings

Data. For Q1 and Q2, we generate synthetic data using the procedure from Mozannar et al. [7].
Such a procedure generates samples containing (i) instances for which the human expert performs
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(a) ASM accuracy. (b) τ̂ATD for ASM. (c) τ̂ATD at c = .90. (d) τ̂RD for ASM.

Figure 4: Performance on synthetic data. (a) reports the deferring system accuracy when varying
cutoff κc for the best baseline Asymmetric SoftMax (ASM) w.r.t. accuracy. (b) reports estimated
τ̂ATD when varying cutoff κc on synthetic data for the best baseline. (c) compares the τ̂ATD of multiple
baselines at a fixed coverage c = .90. (d) reports estimated τ̂RD when varying cutoff κc for the best
baseline.

better than the ML model and (ii) instances for which the ML model is better than the human expert.
Regarding Q3, we consider four datasets used in the LtD literature: cifar10h [48], a hard-labelled
version of galaxyzoo [49], hatespeech [50], and xray-airspace [51, 52]. Table 2 provides
relevant data characteristics, while the applied pre-processing is detailed in Appendix D.1.1.

Baselines. We consider several deferring systems, including: Selective Prediction (SP) [53], Com-
pare Confidence (CC) [3], Differentiable Triage (DT) [2], Cross-Entropy Surrogate (LCE) [4], One
Vs All (OVA) [5], Realizable Surrogate (RS) [7] and Asymmetric SoftMax (ASM) [8]. Table 2 re-
ports the base network model and the methods’ hyper-parameters used for each dataset. We provide
further details for the baselines and the hyper-parameters choice in Appendices D.1.2, D.1.3.

General setup. For all the experiments, we consider the following steps: (i) we randomly
split the dataset in training, validation, and test set, according to a 70%, 10%, 20% propor-
tion; (ii) we train the deferring system on the training set; (iii) we estimate different cut-
off values κc over the validation set, considering each of the following target coverages c ∈
{.10, .20, .30, .40, .50, .60, .70, .80, .90}; (iv) for each cutoff value κc, we estimate on the test set
the deferring system accuracy as well as τATD and τRD. We consider a single training, validation,
and test split since our goal is estimating the causal effect of implementing a deferring system, not
estimating its predictive accuracy. The estimate τ̂ATD is computed through a difference in means
estimator and τ̂RD is obtained using the default implementation of rdrobust package [54], i.e., a
local linear kernel regression with optimal bandwidth [55]. To assess the statistical significance of
the results, we report the 95% confidence intervals and the corresponding p-values (pv) associated
with τ̂ATD and τ̂RD when testing the null hypotheses of τATD = 0 and τRD = 0, respectively. We correct
for multiple testing through the Bonferroni correction for all the tested hypotheses (five datasets, ten
coverages under Scenario 1 and nine under Scenario 2, seven methods): to achieve significance at a
family-wise error rate of α = .05, the p-value must be smaller than 7.52e−5.

4.2 Experimental results

Figure 4 shows the results on the synthetic data (Q1 and Q2). Concerning real data (Q3), Figure 5
reports the results for Scenario 1, while results for Scenario 2 are discussed in Appendix D.2. For
each dataset, we also report the best-deferring system in terms of accuracy: Figure 4a shows the
accuracy for the synth dataset, while the bottom row of Figure 5 plots the accuracy for the real
datasets. Appendix D.2 reports results for the other baselines.

Q1: causal effects under Scenario 1. Figure 4b shows the estimated τ̂ATDs (the green diamonds)
and their confidence intervals when varying the cutoff κc. The black horizontal line denotes the null
effects for τ̂ATD and τ̂RD. The plot confirms the effectiveness of ASM, with an increasing trend in
the estimated causal effects, ranging from ≈ .095 (pv ≈ 6.98e−26) at zero coverage to ≈ .417
(pv ≈ 7.32e−58) at c = .90. Hence, introducing a deferring system turns out to be beneficial.
Moreover, the strictly increasing value of τ̂ATD w.r.t. the cutoff κc allows us to confirm the deferring
strategy’s effectiveness further. In fact, the higher the coverage, the more difficult instances are
deferred to the human. Hence, the system is properly ranking the instances. We point out that this
effect cannot be quantified by only examining the accuracy (see Figure 4a), as done by existing
works in the literature.
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Figure 5: Best deferring system performances on real data when varying the cutoff κc. Top: esti-
mated τATD. Bottom: accuracy. CC is Compare Confidence, RS is Realizable Surrogate.

Moreover, under Scenario 1, we can fix the target coverage and compare the estimate τ̂ATD for mul-
tiple deferring systems. Figure 4c provides an example of this approach for c = .90. The ASM and
CC baselines perform the best in such a case.

Q2: causal effects under Scenario 2. Due to the limited access to the ML model predictions,
under Scenario 2, the estimation of the causal effect τRD can be done only at the cutoff value κc

because (i) we do not observe human predictions for the instances with reject-score below κc; (ii)
we cannot access the ML model predictions for the instances with reject score above κc; and (iii)
we cannot freely compare the performance on instances assigned to the ML model with performance
on instances deferred to the expert as they are different from each other by construction. Figure 4d
reports the estimated τ̂RD’s: coefficients are negative (and not significant) for low coverage values,
reaching the minimum value at κ.40 with an estimated effect of ≈ −.272 (p-value ≈ 3.14e−2). The
estimates increase and become significant for larger coverage values, achieving a maximum value
of ≈ .427 (p-value ≈ 1.20e−14) at c = .80. Thus, for the instances with a reject score value close
to κ.80, deferring to a human expert causes an increase in accuracy of ≈ 42.7%.

As a general consideration, at the cutoff for which the estimated τ̂RD is close to zero, we have that
predicting with an ML model or a human expert is the same. Hence, such a cutoff maximizes the
overall human-AI team accuracy. In higher cutoff values, the human performs better, while in lower
cutoff values, the ML model performs better. From Figure 4d, the τ̂RD is close to zero for κ.50. At
such a cutoff, accuracy is maximized, as shown in Figure 4a. In summary, the study of τ̂RD at the
variation of κc helps evaluate whether the threshold κ in the deferring system has been properly set.

Q3: real datasets. Consider Figure 5. Regarding cifar10h, the τ̂ATD’s are positive and increasing
with κc: the values range from ≈ .019 at c = 0 to ≈ .265 (pv ≈ 2.83e−10) at c = .90. This means
that the deferring system correctly identifies those instances where the ML model is better than the
human expert because deferring fewer instances yields higher τ̂ATD’s.

For galaxyzoo, τ̂ATD takes negative values for the coverages below c = .70. This is because the
ML model at full coverage (accuracy of ≈ .843) performs better than the human expert (accuracy
of ≈ .743). Moreover, for c = .80 and c = .90, the estimated τ̂ATD are ≈ .068 (pv ≈ 4.69e−2)
and ≈ .096 (pv ≈ 3.56e−2) respectively. In particular, they are not statistically different from zero.
Hence, introducing a deferring system would not improve over a fully automated setting.

For hatespeech, the causal effects monotonically increase with the coverage, with τ̂ATD ranging
from ≈ .019 (pv ≈ 9.54e−18) at c = 0 up to ≈ .295 (pv ≈ 7.40e−28) at c = .90. All the values
significantly differ from zero, suggesting that deferring is effective.

We can also observe an overall positive effect for the xray-airspace dataset. Notice that the high-
est τ̂ATD is achieved at c = .80 (≈ .209, pv ≈ 4.29e−9), while the τ̂ATD at c = .90 is lower (≈ .179,
pv ≈ 2.41e−5). This suggests that the reject score of the deferring system may not properly iden-
tify where the human expert performs better than the ML model. However, the difference between
c = .80 and c = .90 is not statistically significant.
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5 Conclusions

We tackled the evaluation of predictive accuracy of deferring systems from a causal perspective. Our
link with the potential outcomes and with the RD design frameworks directly allows for reasoning
on the causal effects of the deferring strategy. Experiments showed some practical guidance on how
to reason about the causal estimations to evaluate deferring systems.

Limitations and broader impact. We assumed that we had access to the reject scores k(x) of
instances. This is not strictly required under Scenario 1, for which only the information on whether
an instance is deferred or not is required. Conversely, identifying τRD under Scenario 2 requires
at least knowing the ranking induced by the reject score. Moreover, Assumption 1 must hold to
identify τRD. However, such an assumption is not directly verifiable and can only be falsified. We
discuss this further in Appendix C and show how to falsify Assumption 1 in Appendix D.3.

From a broader impact perspective, our evaluation framework can be used to quantify the impact of
deferring systems. Since these systems are becoming increasingly popular in many socially sensitive
contexts, our approach can help better evaluate and deploy safer systems.

Future work. Multiple directions are open to future research. We mention extending our approach:
to evaluate fairness metrics beyond predictive accuracy; to deferring strategies that consider multiple
human experts; and to account for the influence that deferring has on human behaviour, as in strategic
classification and performative predictions.
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A Extended Related Work

Abstaining systems. The idea to allow ML models to abstain (a.k.a. to reject) from predicting
dates back to the 1970s, with the seminal work by Chow [56].

In the literature, two kinds of rejections have been considered: novelty rejection and ambiguity re-
jection. The former provides methods that abstain when the instances are far away from the training
data distribution; the latter abstains on instances close to the decision boundary of the classifier [57].

Novelty rejection is highly sought if a shift between the training and the test set distributions can
occur [38]. Multiple approaches have been proposed for building novelty rejectors. For instance, one
can estimate the marginal density of the training distribution and reject an instance if its probability
is below a certain threshold [58, 59]. Another approach relies on a one-class classification model that
predicts as novel the instances falling out of the region learnt from the training set [60]. Alternatively,
one can provide a score representing the novelty of an instance and abstain when such a score is
above a certain level [61, 62, 63, 64].

Regarding ambiguity rejection, two main approaches have emerged in the literature: Learning to
Reject (LtR) [56] and Selective Prediction (SP) [40].

LtR - based on the original work by Chow [56] - aims at learning a pair (classifier, rejector) such
that the rejector determines when the classifier predicts, limiting the predictions to the region where
the classifier is likely correct [65]. The LtR methods learn the trade-off between abstention and
prediction through a parameter a, representing the cost of rejection [66, 67, 68, 69].

On the other hand, SP methods rely on confidence functions, identifying instances where the clas-
sifier is more prone to make mistakes [40]. Confidence values allow one to trade off coverage c
for selective risk, namely the risk over those instances for which a prediction is provided. Such
a trade-off can be used to frame the learning problem in two ways: either we maximize coverage
given a minimal target risk we want to ensure (bounded-improvement problem), or we minimize the
selective risk given a target coverage (bounded-abstention problem) [70].

From a practical perspective, both model-agnostic methods (e.g., [71, 72, 73]) and model-specific
ones (e.g., using Deep Neural Network architectures [53, 74, 75, 76, 77]) have been proposed to
solve the selective prediction task. For an extensive characterization of deep-neural-network (DNN)-
based approaches, we refer to [20], where the authors empirically compare existing DNN-based
approaches, categorizing them depending on how they abstain.

An in-depth theoretical analysis for both LtR and SP can be found in [70], where the authors show
that both frameworks share similar optimal strategies, and a recent survey covering abstaining sys-
tems can be found in [57], where the authors provide an overall taxonomy of existing approaches.

Choe et al. [21] consider the evaluation of abstaining classifiers, in a scenario where the predictions
are missing or unaccessible for the rejected instances. They define the counterfactual score as
the expected accuracy of the classifier had it not been given the option to abstain. A double-ML
approach [78] is used to estimate the counterfactual score. In order to exploit results of inference
under missing data, the paper assumes a stochastic abstention policy, which is impractical in the
context of deferring systems: instances are not deferred to a human expert at random.

Deferring systems. Learning to Defer (LtD) - as framed by Madras et al. [1] - is a generalization of
LtR, where rather than incurring a rejection cost, the system can defer instances to human expert(s).
Compared with LtR and SP, one of the main differences is that the expert’s predictions might be
wrong under the LtD framework.

From a theoretical perspective, De et al. [79] show that the problem of learning to defer when
choosing a ridge regression as a base predictor is NP-hard. By reformulating the problem using
submodular functions, they devise a greedy algorithm with some theoretical guarantees. Similar
results also hold for the classification setting when considering margin-based classifiers, as shown
in [80]. Okati et al. [2] formally characterises the scenarios where a predictive model can take
advantage of including humans in the loop. They show that standard ML models trained to predict
over all the instances may be suboptimal when it comes to LtD, proposing a deterministic threshold
rule to determine when the ML model or the human has to predict.

Due to the difficulties in directly optimizing (2), several approaches provide surrogate losses to learn
predictors that can defer to experts: Mozannar and Sontag [4] propose a method that jointly learns
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both the rejector and the ML predictor with some generalization bounds; Verma and Nalisnick [5]
and Cao et al. [8] extend the work of [4] by providing consistent surrogate loss with better calibration
properties; Verma et al. [6] consider the problem of deferring to a multitude of experts; Mozannar
et al. [7] provide a Mixed Integer Linear Programming formulation to solve the problem in the linear
setting and a novel surrogate loss that is realizable and consistent.

Regression discontinuity. The RD design first appeared in [81] to study the motivational effect
of public recognition on the likelihood of obtaining a scholarship. Forty years later, [18] proposed a
thorough formalization of this methodology, which shows the identification of the average treatment
effect on the treated via smoothness of the potential outcomes. An alternative framework for iden-
tification has been presented in [82] and [83], where the authors carefully propose conditions under
which, at least near the cutoff, the RD design can be interpreted as an RCT. Early reviews are [84]
and [85], whereas a more recent one contrasting the two approaches mentioned above is [86].

For estimation purposes, the local nature of τRD motivates the use of local non-parametric polynomial
kernel regressions estimators from the left and from the right of the cutoff (for a review see [43]).
Particular attention in the literature has been devoted to how to optimally choose the smoothing
bandwidth used in local polynomial estimation (for different approaches to the problem, see [84, 87,
88]) and how to correct for the smoothing bias and conduct valid inference accordingly [89, 90]. For
a practical introduction to RD and more information on how to choose the other tuning parameters
(kernel shape and degree of the polynomial), see [91].

B Proofs

We report here the proofs for Proposition 2 and 3. For the reader’s convenience, we also restate the
propositions.
Proposition 2. Let Scenario 1 hold. Then:

τATD = E[T (1)− T (0)|G = 1] = E [1{h(X) = Y } | G = 1]− E [1{f(X) = Y } | G = 1] .

Proof. We have that:

τATD = E [T (1) | G = 1]− E [T (0) | G = 1]

= E [1{h(X) = Y } | G = 1]− E [1{f(X) = Y } | G = 1] ,

where the last two quantities are observable under Scenario 1.

Proposition 3. Let Scenario 2 hold and let Assumption 1 be satisfied for the deferring system. Then

lim
k→κ+

c

E[T | K = k]− lim
k→κ−

c

E[T | K = k] = τRD,

where τRD := E[T (1)− T (0) | K = κc].

Proof. This is an instance of Theorem 1.

C Limitations and Extensions

Here are a few caveats regarding the proposed framework.

Is Assumption 1 met? Assumption 1 is required to be able to identify the causal effect under
Scenario 2. Formally, such an assumption requires continuity of the expected predictive accuracy at
coverage level κc for both the ML model and the human. In practical terms, there is no reason to
believe that the accuracy of the ML model would abruptly change in a neighborhood of κc. However,
continuity of E[T (1) | K = k] around κc could be falsified, e.g., if the expert would put extra
effort into predicting deferred instances compared to the non-deferred ones. Concerning this aspect,
Bondi et al. [41] show that the role of communicating the deferral status can indeed impact human
performance. On the one hand, they observe improvements in human accuracy for those instances
where the ML model is correct if the deferral choice is communicated to the human predictors.
On the other hand, they do not observe a statistically significant effect in those instances in which
the ML model makes mistakes. Therefore, we advise considering this aspect when developing and
evaluating a deferring system.
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Is Assumption 1 testable? Unfortunately, Assumption 1 is not directly testable because ML pre-
dictions (T (0)) and human predictions (T (1)) are not available when K ≥ κc or K < κc, respec-
tively. However, it is possible (and suggested) to test the implications of Assumption 1. In what
follows, we briefly describe three different falsification tests. We refer the reader interested in a
more detailed review and guide on these (and other) tests to [85] and [91, Chapter 5].

Non-manipulation of the running variable. One instance in which Assumption 1 does not hold is
when units know the rule with which the running variable Ki is computed and/or can manipulate its
value. Accordingly, a feasible falsification test involves checking whether the empirical probability
distribution of the running variable is smooth (i.e., it does not jump) at the cutoff. This test can
be formally conducted by estimating the density of the running variable with histograms or kernel
density estimators [91, 92]. For a practical example, see Section D.3 and Figures 7-11.

No effect on predetermined features and placebo outcomes. In a similar spirit to what we described
above, another falsification test involves comparing treated and control units near the cutoff to see
if they share similar observable traits: if units can’t manipulate their score, there should not be
systematic differences between units close to the cutoff, aside from their treatment status. As such,
units just above and below the cutoff should resemble each other in all aspects unaffected by the
treatment. These aspects (or features) can be predetermined features, variables realizing before
treatment assignment, or placebo outcomes, variables that should not have been influenced by the
treatment. This test can be conducted by estimating an RD where the outcome variable is either a
predetermined feature or a placebo outcome and checking that the null hypothesis of no effect is not
rejected. An application of this falsification test can be found in Section D.3.1 and in the fourth row
of Figure 6.

Placebo cutoffs. Another type of falsification test involves checking if statistically significant treat-
ment effects can be estimated using artificial cutoff values. We stress that the evidence of no effect
–hence smoothness of the expected potential outcomes– away from the cutoff is neither sufficient
nor necessary for Assumption 1 to hold, but the presence of discontinuities in other places might
discredit such an assumption. To conduct such a test, one has to estimate the RD using a cutoff
value that is different from the original one. Section D.3.1 and the second and third rows of Figure
6 showcase this falsification test in our empirical applications.

Optimal coverage We again stress that RD designs are local in nature. Hence, under Scenario 2,
without imposing additional strong parametric assumptions on the shape of E[T (d)|K = k], d ∈
{0, 1}, we cannot recover the average treatment effect for coverage levels other than κc. However,
suppose that we have access to different batches of data, where similar human experts and the same
ML model take turns in predicting the ground truth Y , but the reject-score threshold was let vary
in a countable (ordered) set K ⊆ K. For instance, we can be in the presence of multiple human
moderators that receive different amounts of content to moderate (i.e. κ is changing). Then, we can
leverage results in the literature of RD designs with multiple non-cumulative cutoffs [93, 94] and
identify

τRDD(k) := E[T (1)− T (0) | K = k], k ∈ [κlb, κub],

where κlb := minK and κub := maxK. More precisely, identification of τATD(k) requires continu-
ity of E[T (d) | K = k], d ∈ {0, 1} in k for k ∈ [κlb, κub] and a similar shape of E[T (0) | Ki = k]
across datasets. An exercise in this spirit might be useful to choose the optimal level of cover-
age κ⋆ := argmaxk∈K τATD(k), where the optimality is defined in the sense of getting the largest
increase in predictive accuracy out of having human experts guessing instead of the model.

Should we increase or decrease the coverage? Despite being local by construction, the RD can
be used to learn about the gradient of the treatment effect at the cutoff. Indeed, Dong and Lewbel
[95] show that, under regularity conditions on how E[T (d) | K = k], d ∈ {0, 1} changes around
κc, the RD setting can be used to learn how τRD would change if the reject-score threshold κc were
marginally changed. Therefore, this suggests that when the deferring system accuracy is maximal,
τRD should be close to zero. The intuition is that we should be indifferent between predicting with
the ML model or deferring to the human expert at the optimal value.

Uncertainty in the ML model estimation The outcome variable for unit i in the LtD framework
is Ti = 1{ϑ(Xi) = Yi} and the running variable is the reject score Ki = k(Xi) (see Table
1). However, in practice, we compute the outcome and the reject score via an estimated version
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of the model, i.e. f̂(·). We explicitly do not consider this source of uncertainty because access is
usually limited to an estimated final version of the model without possibly fitting it again (e.g., large
language models [96]). For this reason, with a slight abuse of notation, we always write f(·), Ti,
and Ki when we should write f̂(·), T̂i, and K̂i, respectively. If one is willing also to capture this
uncertainty and model re-estimation is viable, off-the-shelf non-parametric bootstrap procedures
are available. Moreover, [97] show that under the condition that the noisy score correctly assigns
samples to treatment and control groups, τRD can be interpreted as the treatment effect when the noisy
score equals the cutoff. We argue that this latter measure is still the one of interest, particularly so
when the model is taken as given because the reject score can only be computed using the estimated
ML model.

D Experimental evaluation

D.1 Additional details

D.1.1 Data

We use the data from Mozannar et al. [7] and Okati et al. [2].

Concerning the synthetic dataset synth, we generate the data using the method described in Mozan-
nar et al. [7]3: given a parameter d, x ∈ Rd is sampled from a mixture of d equally weighted
Gaussians, each one with uniformly random mean and variance. To obtain the target variable Y ,
the procedure generates two random half-spaces, one referring to the optimal policy function
g∗ : X → {0, 1} and one representing an optimal ML model f∗ : X → Y . The fraction of in-
stances for which g∗(x) = 0 is randomly chosen to be between .20 and .80. For all those instances
on the side where g∗(x) = 0, the target variable Y is changed to be consistent with the optimal
ML model f∗(x) with probability 1 − pML and otherwise uniform. Conversely, when g∗(X) = 1,
the labels are uniformly sampled. The human expert h(x) is then set to make mistakes at a rate of
ph0 when g∗(x) = 0 and at a rate of ph1 when g∗(x) = 1. In our experiments, we set d = 30,
ph0 = .30, ph1 = .10, pML = .20.

Regarding real data, in cifar10h [48], the task is to annotate images belonging to 10 different
categories. Here, the human prediction is provided by a separate human annotator.

In galaxyzoo [49], the main task is identifying whether the image contains a non-smooth galaxy.
Thus, Y = 0 if the image contains a smooth galaxy and Y = 1 otherwise. Since we have 30
annotators for each image, we consider the majority of the annotators as the target variable Y , while
the human expert prediction h(X) is sampled randomly from the 30 annotators.

For hatespeech [50], the goal is to detect whether the text contains offensive or hate-speech lan-
guage. The human predictor is sampled randomly as in Mozannar et al. [7].

Finally, xray-airspace [51, 52] contains both chest X-rays with human predictions and chest X-
rays without human predictions. For each image, the target variable Y encodes the presence of an
airspace opacity. The human predictions are randomly sampled from multiple experts, as done by
Mozannar et al. [7].

D.1.2 Baselines

Selective Prediction (SP): Geifman and El-Yaniv [53] present a neural network classifier with a
reject option. The reject score is defined considering the maximum of the final softmax values,
i.e., k(x) = maxy sy(x), where sy(x) is the final layer softmax value for class y. We stress that SP
does not take into account the human expert’s ability but determines deferral only based on those
cases where the ML model is uncertain.

Compare Confidence (CC): Raghu et al. [3] extend SP by learning (independently) another model
- called the expert model - that uses as a target variable whether the human expert is correct. Then,
deferral is determined by comparing the reject score of the classifier and the expert model.

Differentiable Triage (DT): Okati et al. [2] consider a two-stage approach, where at each epoch (i)
the classifier is trained only on those points where the classifier loss is lower than the human loss,

3See the GitHub repository https://github.com/clinicalml/human_ai_deferral
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(ii) another ML model - called the rejector - is fitted to predict who has a lower loss between the
classifier and the human. At the end of the training procedure, deferral is decided based on the
estimated probability of the human expert having a lower loss than the classifier.

Cross-Entropy Surrogate (LCE): Mozannar and Sontag [4] propose a consistent surrogate loss of
(2), when l is the 0-1 loss. The surrogate loss is then used to train the deferring system, which
employs a neural network with an additional head to represent deferral;

One Vs All (OVA): Verma and Nalisnick [5] propose a different consistent surrogate loss, which
improves the final calibration of the deferring system;

Realizable Surrogate (RS): Mozannar et al. [7] extend the approaches based on surrogate losses by
considering a consistent and realizable-consistent surrogate of (2), when lM and lH are the 0-1 loss.
As for LCE, also RS considers a neural network with an additional head representing deferral.

Asymmetric SoftMax (ASM): Cao et al. [8] extend both LCE and OVA by providing a surrogate
loss that ensures a better calibration of the reject score.

For all the baselines but ASM, we consider the implementation provided by Mozannar et al. [7]3.
We implement ASM from Cao et al. [8]’s code, which can be found in their supplementary material.

D.1.3 Hyperparameters

For synth, we considered a simple linear feedforward architecture. For each baseline, we trained
the model for 50 epochs with lr = 1e − 2 and Adam [98] as the optimizer. Batch size was set to
1, 024.

For real data, all the methods were trained following the settings in either Mozannar et al. [7]
(cifar10h, hatespeech, xray-airspace) or Okati et al. [2] (galaxyzoo).

In particular, for cifar10h, we trained a base WideResNet on the original cifar10 dataset for 200
epochs using cross-entropy loss, learning rate equals to .001 and AdamW [99] as an optimizer. For
each baseline, we fine-tuned the base WideResnet on cifar10h for 150 epochs, using a learning
rate of .001 and AdamW as an optimizer.

For hatespeech, we considered pre-trained embeddings of SBERT and we fine-tuned a feed-
forward neural network for 100 epochs, setting the learning rate to .01 and Adam as optimizer.

For xray-airspace, we first fine-tuned a pre-trained DenseNet121 [47] for 10 epochs on the x-rays
that do not contain human predictions, setting lr = 1e−4 and AdamW as the optimizer. For each
baseline, we further fine-tuned the obtained model, training it for 3 epochs on xray-airspace with
a learning rate equal to 1e−3 and AdamW as the optimizer.

Finally, for galaxyzoo, we consider a pre-trained ResNet50 and train each baseline for 50 epochs,
using Adam as the optimizer and a learning rate of 1e−3.

The batch size was set to 128 for all the real datasets.

D.1.4 Hardware and carbon footprint

Regarding computational resources, we split the workload over two machines: (i) a 96 cores ma-
chine with Intel(R) Xeon(R) Gold 6342 CPU @ 2.80GHz and two NVIDIA RTX A6000, OS Ubuntu
20.04.4; (ii) a 224 cores machine with Intel(R) Xeon(R) Platinum 8480+ CPU and eight NVIDIA
A100-SXM4-80GB, OS Ubuntu 22.04.4 LTS.

We track all our runs using the Python package codecarbon [100]. This allows us to consider
the total time required by all our experimentation (including failed and repeated experiments) and
its environmental costs. Overall, the cumulated time of all our runs amounts to ≈ 5 days. This
translates into an overall CO2 consumption of roughly ≈ 25.2 Kg Eq.CO2, which equals a car drive
of ≈ 60 miles.

D.2 Detailed results for Q1, Q2 and Q3

Tables 3-7 report the detailed results of experiments on the synthetic and the real datasets. Tables
include τ̂ATD (the Scenario 1 main estimate), τ̂RD (the Scenario 2 main estimate), and the deferring
system accuracy at various target coverages for all the seven baselines. For τ̂ATD and τ̂RD, we show in
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Table 3: synth results. Bold for highest value, blue p-values for statistical significance.
c ASM CC DT LCE OVA RS SP

τ̂ A
T
D

.00 .095 (6.98e−26) .128 (1.07e−45) .112 (1.66e−35) .123 (1.07e−42) .122 (2.63e−42) .098 (1.10e−27) .132 (1.55e−48)

.10 .127 (3.53e−40) .164 (1.53e−65) .137 (1.29e−46) .154 (8.57e−59) .154 (8.23e−59) .130 (1.27e−41) .158 (2.83e−62)

.20 .159 (1.28e−55) .191 (9.98e−81) .164 (1.01e−59) .178 (1.57e−70) .188 (6.60e−80) .166 (7.48e−61) .179 (4.01e−72)

.30 .205 (7.92e−81) .229 (1.58e−100) .198 (2.65e−76) .203 (1.90e−81) .223 (1.55e−97) .202 (2.14e−78) .208 (2.51e−86)

.40 .262 (6.27e−116) .264 (5.01e−117) .234 (4.86e−92) .234 (8.99e−95) .262 (7.11e−118) .251 (9.56e−106) .233 (2.39e−94)

.50 .320 (9.03e−158) .305 (1.16e−138) .260 (1.51e−98) .260 (9.15e−98) .302 (6.62e−136) .319 (7.30e−150) .248 (3.62e−88)

.60 .375 (2.62e−181) .335 (2.03e−137) .291 (3.45e−104) .289 (1.83e−99) .347 (5.46e−155) .363 (8.52e−170) .264 (7.92e−82)

.70 .404 (8.12e−161) .364 (3.09e−127) .323 (3.13e−99) .327 (1.28e−101) .381 (6.66e−148) .390 (4.27e−155) .281 (1.17e−69)

.80 .409 (4.07e−106) .378 (1.31e−94) .340 (1.98e−72) .357 (1.04e−83) .386 (2.32e−100) .375 (7.04e−89) .293 (1.06e−51)

.90 .417 (7.32e−58) .421 (8.99e−61) .376 (3.83e−42) .358 (5.77e−40) .385 (1.88e−55) .389 (3.32e−46) .308 (2.61e−30)

τ̂ R
D

.10 −.184 (3.62e−3) −.146 (4.69e−2) −.095 (1.21e−1) −.130 (6.87e−2) −.156 (7.23e−2) −.272 (2.83e−3) .068 (5.10e−1)

.20 −.246 (4.21e−4) −.183 (9.61e−3) −.107 (3.22e−2) −.034 (4.94e−1) −.044 (5.02e−1) −.086 (1.54e−1) .117 (1.57e−1)

.30 −.052 (4.57e−1) .008 (8.73e−1) −.015 (7.74e−1) −.012 (8.31e−1) −.077 (1.69e−1) −.098 (1.15e−1) −.158 (1.54e−2)

.40 −.272 (3.14e−2) −.051 (2.78e−1) −.009 (8.45e−1) .099 (9.91e−2) .007 (9.08e−1) −.126 (5.03e−2) .106 (7.09e−2)

.50 .045 (6.72e−1) .080 (1.46e−1) .113 (3.47e−2) .053 (3.94e−1) .134 (2.31e−2) −.024 (6.39e−1) .190 (1.28e−3)

.60 −.022 (8.26e−1) .096 (1.72e−1) .149 (1.47e−2) .147 (1.81e−2) .328 (3.55e−6) .340 (3.76e−6) .240 (9.45e−4)

.70 .417 (5.28e−10) .314 (5.59e−7) .210 (4.80e−4) .062 (3.66e−1) .374 (1.32e−10) .339 (5.01e−7) .352 (1.71e−7)

.80 .427 (1.20e−14) .370 (2.01e−7) .277 (2.63e−6) .333 (7.94e−9) .429 (2.18e−12) .236 (1.02e−3) .170 (3.32e−2)

.90 .345 (1.71e−5) .460 (1.67e−10) .418 (1.01e−5) .222 (7.58e−3) .401 (2.28e−9) .254 (4.17e−3) .280 (1.87e−3)

A
cc

ur
ac

y

.00 .797 .797 .797 .797 .797 .797 .797

.10 .817 .816 .808 .812 .813 .815 .809

.20 .831 .825 .818 .818 .828 .833 .812

.30 .848 .831 .825 .820 .834 .843 .817

.40 .863 .830 .826 .820 .836 .853 .812

.50 .871 .829 .820 .810 .832 .863 .794

.60 .860 .810 .809 .796 .822 .853 .774

.70 .827 .785 .788 .779 .796 .824 .751

.80 .784 .748 .757 .750 .752 .773 .726

.90 .745 .714 .721 .709 .716 .736 .701
1.00 .702 .669 .685 .674 .675 .699 .665

parentheses the associated p-value when testing the significance of the causal effect being different
from zero. Significant (after Bonferroni correction of α = 0.05) p-values are shown in blue.

Q3: real datasets under Scenario 2. We observe that most of the τ̂RD estimates are not statistically
significant. A motivation for this is because the considered test sets are not large in size, ranging from
854 (xray-airspace) to 4, 597 (hatespeech) instances. This impacts the estimation strategy, as
τ̂RD is computed through local kernel regressions over instances within an optimal bandwidth. In
summary, locally to the deferring boundary, the difference between the ML model and the human
expert is minimal (we cannot reject the null hypothesis that it is zero) for most of the coverages c.

A few exceptions can be noticed. For galaxyzoo and the CC baseline, a few statistically significant
(and negative) effects on τ̂RD occur. The ML model performs generally better than the human expert
on this task, advocating for almost full automation. For hatespeech, there is a statistically signifi-
cant effect ≈ .348 (pv ≈ 4.1e−5) for RS (the best baseline w.r.t. accuracy) at κc = .90. Thus, the
causal effect of deferring to the human expert on instances around the cutoff κ.90 is positive. For
xray-airspace, which resembles the settings of the example (Ex2) from the introduction, and for
the RS baseline, there is at κ.30 a large negative effect effect of ≈ −.473 (pv ≈ 8.95e−3, yet not
statistically significant). This is in favor of deferring from the human expert to the ML model.

We also notice some extreme cases where there is insufficient variability of the reject scores at the
cutoff. This occurs when the reject scores are peaked around a value. In those cases, the local
polynomial regression, as implemented by rdrobust, is not able to estimate τ̂RD. These cases are
reported as “−” in Tables 3-7.

D.3 How to validate estimates under Scenario 2

When considering Scenario 2, we require Assumption 1 to hold. Here, we provide a few sanity
checks that can be implemented to validate the estimates (see Appendix C for a detailed description).

D.3.1 Placebo Tests

Placebo cutoff test setup. We consider the same setup presented in Section 4.1, except for the
following:

1. we estimate two different cutoff values κc,L and κc,H

• κc,L is obtained by considering the 75-th percentile on the instances with a reject score
below κc,

• κc,H is estimated by considering the 25-th percentile of the reject scores above κc;
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Table 4: cifar10h results. Bold for highest value, blue p-values for statistical significance.
c ASM CC DT LCE OVA RS SP

τ̂ A
T
D

.00 .028 (4.55e−5) .018 (5.35e−3) .049 (1.39e−10) .018 (4.84e−3) .021 (2.40e−3) .018 (5.35e−3) .021 (1.36e−3)

.10 .033 (2.15e−5) .027 (1.85e−4) .038 (4.64e−7) .021 (2.81e−3) .024 (1.36e−3) .021 (4.11e−3) .024 (1.01e−3)

.20 .039 (6.45e−6) .035 (1.16e−5) .035 (1.55e−6) .027 (6.14e−4) .027 (1.01e−3) .025 (2.37e−3) .029 (5.43e−4)

.30 .048 (7.06e−7) .046 (1.09e−7) .016 (1.80e−2) .033 (2.19e−4) .035 (1.99e−4) .032 (5.13e−4) .037 (6.76e−5)

.40 .062 (3.30e−8) .057 (5.77e−9) .007 (2.58e−1) .041 (7.55e−5) .045 (3.07e−5) .041 (1.26e−4) .043 (4.56e−5)

.50 .086 (4.67e−11) .073 (2.30e−10) −.004 (4.50e−1) .059 (1.45e−6) .056 (1.32e−5) .051 (2.57e−5) .058 (3.54e−6)

.60 .108 (2.70e−12) .095 (1.16e−11) −.003 (6.38e−1) .073 (7.63e−7) .079 (5.61e−7) .080 (6.18e−8) .079 (5.54e−8)

.70 .132 (1.71e−13) .127 (1.25e−12) −.007 (1.57e−1) .098 (2.99e−8) .116 (7.92e−9) .120 (1.22e−10) .122 (8.63e−11)

.80 .178 (1.83e−14) .200 (7.80e−14) −.005 (3.18e−1) .126 (2.34e−7) .167 (2.85e−10) .189 (5.25e−12) .207 (8.41e−15)

.90 .306 (2.79e−14) .277 (1.74e−11) −.005 (3.19e−1) .193 (2.32e−7) .254 (1.05e−10) .286 (2.72e−12) .320 (2.75e−13)

τ̂ R
D

.10 −.843 (9.54e−2) −.017 (1.89e−1) .114 (1.90e−1) −.029 (6.86e−2) −.005 (5.60e−1) −.017 (1.69e−3) −.015 (8.08e−3)

.20 −.022 (2.12e−1) −.046 (3.61e−3) .122 (2.26e−2) −.011 (4.58e−1) −.027 (2.90e−2) −.022 (9.53e−4) −.025 (1.27e−4)

.30 −.043 (1.73e−5) −.000 (9.92e−1) .213 (4.70e−4) −.005 (7.28e−1) −.039 (8.70e−2) −.029 (3.00e−4) −.024 (3.51e−4)

.40 −.039 (1.65e−3) −.001 (9.75e−1) .054 (3.26e−1) −.016 (4.46e−1) −.009 (5.19e−1) −.038 (2.60e−4) −.037 (1.01e−4)

.50 .006 (8.04e−1) −.020 (2.94e−1) .063 (1.73e−1) −.026 (1.85e−1) −.020 (3.68e−1) −.052 (3.28e−4) −.048 (6.66e−4)

.60 −.146 (2.84e−2) .016 (2.30e−1) −.037 (3.74e−1) −.019 (6.48e−1) −.008 (8.33e−1) −.048 (5.91e−3) −.052 (7.96e−3)

.70 .070 (6.07e−1) −.001 (7.48e−1) −.023 (5.67e−1) .052 (3.03e−1) .080 (1.94e−1) −.055 (4.83e−2) −.059 (4.96e−1)

.80 −.035 (6.22e−1) .101 (4.51e−2) −.041 (2.44e−1) −.014 (8.57e−1) −.027 (7.02e−1) .057 (5.20e−1) .000 (9.99e−1)

.90 .102 (5.04e−1) .260 (2.37e−2) −.030 (2.35e−1) .175 (1.89e−1) .143 (2.15e−1) .059 (7.25e−1) .142 (5.07e−1)

A
cc

ur
ac

y

.00 .958 .958 .958 .958 .958 .958 .958

.10 .959 .963 .943 .959 .959 .958 .958

.20 .960 .967 .936 .961 .959 .959 .959

.30 .963 .971 .919 .963 .962 .962 .962

.40 .966 .973 .913 .964 .964 .964 .963

.50 .971 .975 .907 .968 .965 .966 .966

.60 .971 .977 .908 .967 .968 .972 .970

.70 .970 .978 .907 .968 .970 .976 .974

.80 .967 .978 .908 .962 .970 .975 .977

.90 .958 .965 .908 .955 .962 .967 .964
1.00 .929 .939 .909 .939 .937 .939 .936

Table 5: galaxyzoo results. Bold for highest value, blue p-values for statistical significance.
c ASM CC DT LCE OVA RS SP

τ̂ A
T
D

.00 −.103 (5.96e−18) −.100 (2.98e−17) −.093 (1.13e−14) −.082 (3.04e−11) −.098 (1.89e−16) −.099 (6.63e−17) −.097 (2.81e−15)

.10 −.088 (5.64e−12) −.093 (1.81e−13) −.089 (1.31e−12) −.081 (3.61e−10) −.086 (3.07e−11) −.098 (4.17e−14) −.096 (2.81e−15)

.20 −.076 (1.34e−8) −.082 (8.11e−10) −.094 (1.77e−12) −.074 (6.26e−8) −.072 (2.10e−7) −.092 (1.16e−10) −.096 (2.81e−15)

.30 −.069 (1.01e−6) −.067 (5.59e−6) −.084 (1.65e−9) −.072 (6.54e−7) −.060 (9.17e−5) −.078 (8.71e−7) −.096 (2.81e−15)

.40 −.063 (5.98e−5) −.060 (2.78e−4) −.082 (2.49e−8) −.051 (1.24e−3) −.057 (5.86e−4) −.072 (2.52e−5) −.056 (2.04e−3)

.50 −.060 (4.09e−4) −.045 (2.19e−2) −.090 (1.13e−8) −.039 (3.18e−2) −.046 (1.62e−2) −.039 (4.32e−2) −.039 (6.11e−2)

.60 −.051 (7.96e−3) −.013 (5.68e−1) −.100 (4.39e−8) −.006 (7.62e−1) −.025 (2.54e−1) −.006 (7.74e−1) −.006 (7.88e−1)

.70 −.036 (1.17e−1) .009 (7.49e−1) −.111 (7.99e−8) .013 (5.85e−1) −.014 (5.87e−1) .014 (6.05e−1) .019 (5.06e−1)

.80 .017 (5.84e−1) .068 (4.69e−2) −.105 (1.65e−5) .028 (3.65e−1) .007 (8.12e−1) .060 (7.64e−2) .079 (2.81e−2)

.90 .072 (1.23e−1) .096 (3.56e−2) −.119 (5.50e−6) .102 (1.91e−2) .024 (6.02e−1) .089 (7.63e−2) .105 (3.15e−2)

τ̂ R
D

.10 −.177 (2.37e−1) −.150 (7.54e−5) .496 (2.64e−2) −.192 (7.48e−2) −.262 (1.68e−19) −.162 (1.41e−14) −

.20 −.216 (1.18e−1) −.153 (3.66e−13) .084 (6.61e−1) −.193 (3.60e−3) −.110 (1.84e−1) −.277 (7.73e−26) −

.30 −.187 (3.00e−1) −.165 (2.90e−20) −.511 (1.05e−1) −.086 (2.47e−1) −.152 (2.89e−2) −.277 (2.63e−28) −

.40 −.040 (7.16e−1) −.180 (3.18e−20) .097 (4.50e−1) −.082 (8.66e−2) −.180 (4.49e−2) −.215 (1.02e−2) −

.50 −.050 (5.46e−1) −.206 (6.27e−15) −.023 (8.38e−1) −.261 (1.17e−5) .060 (5.84e−1) −.250 (4.18e−4) −.220 (1.06e−1)

.60 .012 (8.70e−1) −.228 (6.41e−10) −.067 (5.97e−1) −.106 (5.36e−2) −.358 (8.70e−2) −.287 (2.55e−2) −.290 (2.44e−2)

.70 −.123 (1.66e−2) −.178 (1.16e−2) −.312 (1.24e−2) −.018 (7.69e−1) −.381 (2.83e−2) −.152 (5.62e−1) −.036 (8.97e−1)

.80 −.013 (8.67e−1) .153 (1.84e−1) − −.089 (2.41e−1) −.295 (7.49e−2) .213 (3.18e−1) −.353 (1.44e−1)

.90 −.066 (7.63e−1) .211 (8.75e−2) − .158 (8.07e−2) −.010 (9.59e−1) − −.184 (6.52e−1)

A
cc

ur
ac

y

.00 .743 .743 .743 .743 .743 .743 .743

.10 .767 .760 .755 .751 .764 .753 .743

.20 .784 .777 .761 .764 .783 .768 .743

.30 .796 .796 .776 .772 .800 .788 .743

.40 .808 .806 .786 .793 .807 .797 .806

.50 .815 .821 .791 .805 .819 .822 .821

.60 .825 .838 .797 .822 .831 .839 .837

.70 .834 .845 .803 .829 .837 .845 .845

.80 .849 .856 .816 .830 .842 .853 .854

.90 .853 .853 .817 .834 .843 .849 .850
1.00 .846 .843 .836 .825 .841 .841 .839

2. we run a local kernel polynomial regression to estimate τ̂RD, substituting the true cutoff
value κc with both κc,L and κc,H .

Placebo outcome test setup. We consider the same setup presented in Section 4.1, except for the
following:

1. we sample a placebo outcome T̃ , such that T̃ ∼ Bernoulli(p) and p = .5;

2. we run the same local kernel polynomial regression used to estimate τ̂RD substituting the
target variable T with T̃ .

Results Figure 6 provides the results for the placebo tests above. The first row shows the original
estimates for τ̂RD under Scenario 2 for the best baselines.
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Table 6: hatespeech results. Bold for highest value, blue p-values for statistical significance.
c ASM CC DT LCE OVA RS SP

τ̂ A
T
D

.00 .067 (1.11e−26) .033 (8.80e−9) .097 (1.41e−49) .037 (2.14e−10) .031 (8.33e−8) .031 (9.54e−8) .030 (1.67e−7)

.10 .078 (7.73e−30) .037 (1.58e−9) .089 (4.07e−41) .042 (4.40e−11) .038 (1.80e−9) .038 (1.27e−9) .036 (1.38e−8)

.20 .092 (9.89e−35) .047 (1.07e−12) .078 (3.08e−30) .047 (9.99e−12) .044 (1.27e−10) .046 (3.68e−11) .047 (3.25e−11)

.30 .107 (7.13e−38) .058 (7.39e−16) .074 (3.69e−26) .060 (1.26e−15) .059 (3.00e−15) .054 (1.18e−12) .058 (1.01e−13)

.40 .129 (4.43e−45) .071 (6.37e−18) .062 (7.38e−18) .076 (2.98e−20) .075 (2.36e−19) .070 (7.63e−16) .076 (6.32e−18)

.50 .159 (3.03e−51) .088 (3.66e−21) .052 (7.85e−12) .094 (2.07e−23) .094 (5.27e−22) .091 (1.47e−20) .096 (8.34e−21)

.60 .202 (5.68e−59) .117 (8.85e−25) .055 (5.07e−11) .111 (1.76e−24) .113 (3.48e−23) .124 (3.12e−26) .117 (3.38e−22)

.70 .281 (1.11e−72) .160 (1.35e−29) .052 (1.78e−8) .134 (4.45e−24) .138 (1.93e−23) .172 (4.05e−34) .165 (8.66e−30)

.80 .359 (2.21e−73) .212 (5.92e−33) .049 (1.39e−5) .185 (4.49e−27) .165 (1.44e−20) .232 (4.47e−35) .201 (1.74e−26)

.90 .468 (2.35e−63) .318 (2.44e−33) .034 (1.79e−2) .222 (5.95e−20) .213 (8.91e−17) .295 (7.40e−28) .255 (1.25e−19)

τ̂ R
D

.10 −.129 (2.04e−2) −.037 (3.12e−1) .122 (9.14e−2) −.044 (1.64e−1) .068 (2.39e−1) −.020 (3.79e−1) −.026 (2.93e−1)

.20 −.020 (5.38e−1) −.063 (1.27e−2) .123 (2.79e−2) −.041 (1.23e−1) .001 (9.90e−1) −.000 (9.89e−1) −.046 (2.71e−2)

.30 .014 (7.85e−1) .008 (6.90e−1) .057 (2.78e−1) −.061 (2.66e−2) −.035 (3.35e−1) .005 (8.97e−1) −.049 (6.71e−2)

.40 −.006 (8.85e−1) −.031 (4.91e−2) .121 (2.29e−3) −.057 (2.34e−2) −.021 (6.03e−1) −.075 (1.45e−2) −.064 (2.53e−2)

.50 −.038 (2.78e−1) .003 (8.80e−1) .133 (7.73e−3) .024 (3.98e−1) −.004 (9.19e−1) −.092 (2.70e−2) −.037 (3.80e−1)

.60 .044 (3.19e−1) −.035 (7.25e−2) −.041 (4.18e−1) .026 (3.91e−1) −.021 (6.29e−1) −.068 (1.20e−1) −.006 (9.15e−1)

.70 −.113 (1.66e−1) .071 (8.66e−2) .098 (7.61e−3) −.009 (8.13e−1) .125 (2.68e−3) .127 (2.08e−3) −.045 (4.37e−1)

.80 .151 (4.38e−2) .035 (5.19e−1) −.030 (5.77e−1) .097 (1.18e−2) .028 (6.77e−1) .067 (2.58e−1) .066 (4.38e−1)

.90 .315 (8.58e−5) .218 (2.66e−2) .054 (3.27e−1) .267 (7.86e−5) .153 (1.32e−1) .348 (4.10e−5) .112 (2.68e−1)

A
cc

ur
ac

y

.00 .908 .908 .908 .908 .908 .908 .908

.10 .911 .908 .893 .909 .911 .912 .910

.20 .914 .912 .874 .908 .912 .914 .915

.30 .915 .915 .863 .913 .918 .916 .918

.40 .919 .916 .849 .918 .922 .920 .924

.50 .921 .918 .837 .919 .923 .924 .926

.60 .922 .920 .833 .917 .922 .928 .925

.70 .922 .921 .827 .912 .918 .930 .928

.80 .910 .919 .821 .908 .910 .923 .919

.90 .883 .907 .815 .894 .899 .908 .904
1.00 .841 .875 .812 .871 .877 .878 .878

Table 7: xray-airspace results. Bold for highest value, blue p-values for statistical significance.
c ASM CC DT LCE OVA RS SP

τ̂ A
T
D

.00 .359 (2.65e−59) .029 (6.73e−2) .189 (1.54e−21) .033 (4.09e−2) .033 (3.77e−2) .039 (1.79e−2) .023 (1.32e−1)

.10 .416 (6.40e−70) .046 (1.19e−2) .196 (2.94e−22) .053 (3.81e−3) .055 (2.28e−3) .059 (1.31e−3) .034 (5.56e−2)

.20 .482 (2.31e−86) .063 (1.46e−3) .199 (6.83e−22) .068 (5.43e−4) .072 (1.98e−4) .080 (7.14e−5) .038 (4.99e−2)

.30 .585 (4.64e−115) .079 (3.13e−4) .209 (2.85e−22) .085 (5.40e−5) .082 (3.37e−5) .091 (1.34e−5) .043 (4.29e−2)

.40 .673 (7.24e−144) .092 (1.10e−4) .239 (5.31e−26) .092 (6.10e−5) .108 (1.11e−7) .123 (5.29e−9) .068 (4.56e−3)

.50 .730 (2.49e−160) .104 (8.15e−5) .242 (7.17e−23) .106 (7.50e−5) .115 (1.61e−7) .140 (1.91e−9) .085 (2.06e−3)

.60 .800 (2.30e−192) .125 (3.60e−5) .254 (6.58e−20) .120 (5.22e−5) .159 (6.11e−11) .149 (2.24e−8) .130 (2.47e−5)

.70 .858 (1.39e−201) .183 (2.02e−8) .191 (2.19e−11) .160 (7.51e−6) .173 (9.47e−10) .149 (1.31e−6) .158 (8.21e−6)

.80 .887 (3.48e−145) .271 (6.70e−11) .032 (1.02e−1) .203 (2.17e−6) .181 (2.22e−8) .209 (4.30e−9) .218 (4.30e−7)

.90 .887 (3.48e−145) .352 (2.71e−9) .033 (1.57e−1) .320 (1.89e−8) .194 (1.47e−4) .179 (2.42e−5) .253 (8.05e−5)

τ̂ R
D

.10 −.272 (1.29e−1) −.215 (4.69e−1) .059 (7.38e−1) −.190 (9.40e−2) −.123 (4.68e−1) −.312 (1.22e−2) −.034 (3.36e−1)

.20 −.558 (1.22e−2) −.013 (7.70e−1) .109 (5.37e−1) −.012 (9.34e−1) −.162 (1.19e−1) −.161 (1.43e−1) .042 (6.52e−1)

.30 .073 (6.71e−1) −.058 (5.48e−1) −.067 (6.38e−1) .103 (1.90e−1) .726 (3.63e−4) −.473 (8.95e−3) −.273 (4.35e−3)

.40 .322 (1.03e−1) .027 (7.69e−1) −.022 (8.44e−1) .092 (1.06e−1) −.153 (2.13e−1) −.069 (5.42e−1) .055 (5.15e−1)

.50 .354 (1.38e−1) .058 (6.20e−1) .144 (2.38e−1) .010 (8.83e−1) .157 (1.16e−1) .125 (1.25e−1) −.018 (8.06e−1)

.60 .465 (2.12e−1) .093 (4.63e−1) .041 (7.67e−1) .014 (8.47e−1) .090 (2.72e−1) .155 (3.70e−2) −.171 (1.60e−1)

.70 .357 (3.82e−1) −.180 (1.35e−1) .638 (5.77e−5) −.064 (4.29e−1) −.044 (6.15e−1) .073 (3.52e−1) −.114 (5.64e−1)

.80 − .137 (3.60e−1) .072 (6.93e−1) −.152 (3.21e−1) .176 (3.33e−2) .077 (3.28e−1) .278 (1.36e−1)

.90 − .065 (7.91e−1) −.222 (1.94e−1) −.023 (9.01e−1) .032 (8.44e−1) .167 (1.06e−1) .008 (9.54e−1)

A
cc

ur
ac

y

.00 .871 .871 .871 .871 .871 .871 .871

.10 .879 .880 .864 .883 .884 .883 .877

.20 .892 .889 .850 .889 .891 .891 .877

.30 .897 .893 .838 .893 .891 .891 .877

.40 .877 .894 .836 .890 .900 .902 .886

.50 .842 .892 .814 .886 .892 .896 .887

.60 .789 .890 .783 .885 .897 .885 .897

.70 .726 .900 .730 .887 .887 .871 .892

.80 .632 .899 .687 .884 .869 .870 .891

.90 .632 .885 .685 .876 .852 .850 .872
1.00 .512 .842 .682 .838 .838 .832 .848

Regarding synth, all the coefficients of the placebo tests are not significant, with the sole exception
of the highest coverage c = .90 when considering the highest cutoff (third row of Figure 6).

When considering cifar10h, hatespeech, and xray-airspace, all the coefficients for all the
placebo tests are not significant. This suggests that our estimated τ̂RD should be robust.

On the other hand, when looking at galaxyzoo, we see statistically significant estimates for the
fake cutoff placebo estimates. This means we should take with a grain of salt our estimated τ̂RD, as
assumptions could be violated.

We can exploit other tests, such as the one detailed in the next subsection, to understand why the
placebo tests fail.
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Figure 6: Estimated τ̂RD for the best baselines over the five datasets. The first row provides the
estimates of τ̂RD. The second row provides the estimates for the lower cutoff placebo test. The third
row provides the estimates for the higher cutoff placebo test. The fourth row provides the estimates
for the placebo outcome test.

D.3.2 Density Estimation

Density estimation test setup. We consider the same setup presented in Section 4.1, and we val-
idate τ̂RD estimates by estimating the empirical density of reject scores. This is done separately for
instances below the cutoff and above the cutoff, using the R package rddensity [101] with de-
fault parameters. This allows us to: (i) statistically assess the continuity of estimated reject score
densities around the cutoff using a permutation test (null hypothesis stands for continuity at the cut-
off); (ii) visualize whether there is a discontinuity in the estimated reject score densities around the
cutoffs.

Results Figures 7-11 provide the density estimation plots and the permutation tests p-values (high
values mean we can’t falsify the assumption) for the best baseline on all the datasets. If the running
variable is not manipulable, we would expect to see no difference in the estimated densities from
both sides of the cutoff.

We can see that for the majority of cutoffs, the estimated densities are close, thus not falsifying
Assumption 1. The only exception is galaxyzoo (Figure 9), where most tests reject the null hy-
pothesis. The main reason for this behavior is that the reject score density peaks around one value,
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(a) κ.10. (b) κ.20. (c) κ.30.

(d) κ.40. (e) κ.50. (f) κ.60.

(g) κ.70. (h) κ.80. (i) κ.90.

Figure 7: synth estimated best baseline (ASM) reject scores densities at the left and right of cutoff
κc. All the plots are zoomed around the cutoff values.

with little variation in the reject scores. Accordingly, small changes in the reject score imply abrupt
changes in predictive accuracy. This sheds light on a potential criticality of the deferring system,
i.e., the reject score estimation. Moreover, this behavior also explains why most placebo cutoff tests
failed for galaxyzoo.

Regarding synth, the null hypothesis is rejected only for c = .10 and c = .90. Once again, this
is because the reject scores peak at −1 and 1, potentially harming the quality of the estimates. We
see similar trends for cifar10h (Figure 8), where the p-values are significant only at c = .10, and
xray-airspace, where values are significant for c > .70 and around the accuracy maximizing
cutoff value, i.e., .κ.50 and κ.

Regarding hatespeech, we see no statistically significant p-values, suggesting the validity of τ̂RD
across all cutoff values (see Figure 10).
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(a) κ.10. (b) κ.20. (c) κ.30.

(d) κ.40. (e) κ.50. (f) κ.60.

(g) κ.70. (h) κ.80. (i) κ.90.

Figure 8: cifar10h estimated best baseline (CC) reject scores densities at the left and right of
cutoff κc. All the plots are zoomed around the cutoff values.
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(a) κ.10. (b) κ.20. (c) κ.30.

(d) κ.40. (e) κ.50. (f) κ.60.

(g) κ.70. (h) κ.80. (i) κ.90.

Figure 9: galaxyzoo estimated reject scores densities at the left and right of cutoff κc for the best
baseline CC. All the plots are zoomed around the cutoff values.
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(a) κ.10. (b) κ.20. (c) κ.30.

(d) κ.40. (e) κ.50. (f) κ.60.

(g) κ.70. (h) κ.80. (i) κ.90.

Figure 10: hatespeech estimated best baseline (RS) reject scores densities at the left and right of
cutoff κc. All the plots are zoomed around the cutoff values.
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(a) κ.10. (b) κ.20. (c) κ.30.

(d) κ.40. (e) κ.50. (f) κ.60.

(g) κ.70. (h) κ.80. (i) κ.90.

Figure 11: xray-airspace estimated best baseline (RS) reject scores densities at the left and right
of cutoff κc. All the plots are zoomed around the cutoff values.
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