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Abstract. Regression Discontinuity (RD) designs are highly popular in economic
research due to their strong internal validity and straightforward intuition. While
RD estimates are local in nature, several recent papers propose methods that gen-
eralize RD estimates to units outside of a small neighborhood of the cutoff. This
paper introduces the Stata getaway package, implementing the method proposed
by Angrist and Rokkanen (2015) to extrapolate treatment effect estimates “away
from the cutoff”, relying on a classical unconfoundedness condition. Additionally,
the package features a data-driven algorithm designed to identify a set of covari-
ates that fulfill the unconfoundedness assumption. It also incorporates a toolkit
intended for testing and visualization purposes.
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1 Introduction

Since its first appearance in Thistlethwaite and Campbell (1960) and rigorous formal-
ization in Hahn, Todd, and Van der Klaauw (2001), the RD design gained extreme
popularity in empirical work in several fields of economics: political (Lee, Moretti,
and Butler 2004; Pettersson-Lidbom 2008; Meyersson 2014; Bronzini and Iachini 2014),
development (Ozier 2018), health (Ludwig and Miller 2007), crime (Pinotti 2017), ed-
ucation (Angrist and Lavy 1999; Cellini, Ferreira, and Rothstein 2010; Duflo, Dupas,
and Kremer 2011; Pop-Eleches and Urquiola 2013), public (Lalive 2008; Battistin, Bru-
giavini, Rettore, and Weber 2009; Coviello and Mariniello 2014), and corporate finance
(Flammer 2015).

In the typical RD design, units are assigned to treatment depending on the value of a
covariate (score or running variable) being above or below a certain threshold (cutoff ).
This creates a conditional probability of being assigned to treatment that jumps at
the cutoff point, generating random variation in treatment status that can be used to
identify causal parameters. Intuitively, units whose score value is close to the cutoff can
be thought of laying on different sides by chance, “as if” they were randomly assigned
to treatment. By comparing their post treatment outcomes, it is therefore possible to
identify a local average treatment effect (τ RD, henceforth).

Since the above mentioned identification assumption only holds in a neighborhood of
the cutoff, the identified causal parameter refers to a very narrow population. Recently,

© yyyy StataCorp LLC st0001

mailto:fpalomba@princeton.edu


2 Getting Away from Cutoffs in RD designs

scholars have proposed alternative ways to extend the causal estimate to different pop-
ulations. Battistin and Rettore (2008) establishes conditions for interpreting τ RD as the
average treatment effect on the treated, utilizing one-sided non-compliance in a fuzzy
RD. Dong and Lewbel (2015) show how to identify the derivative of the treatment ef-
fect at the cutoff under a local policy invariance assumption. Bertanha (2020) identifies
average treatment effects computed over general counterfactual distributions of indi-
viduals, rather than over those units in a neighborhood of the cutoff. In fuzzy RDs,
Bertanha and Imbens (2020) propose a testing procedure to extrapolate the average
treatment effect for compliers to other subpopulations (at the cutoff). Finally, Catta-
neo, Keele, Titiunik, and Vazquez-Bare (2021) use the presence of multiple cutoffs and
a parallel-trend-type assumption to extrapolate the average treatment effect to values
of the score comprised between (at least) two cutoffs.

In this article, I focus on the methodology proposed in Angrist and Rokkanen (2015)
(henceforth, AR) and introduce the getaway package to implement it. In order to ex-
trapolate treatment effects away from the cutoff, AR exploit additional information con-
tained in explanatory variables other than the score to estimate treatment effects away
from the cutoff. The methodology hinges on a “conditional independence assumption”
(CIA), which requires mean independence between potential outcomes and the score
variable conditional on a vector of other covariates, together with a common support
condition. Therefore, in contrast to the other procedures described above, AR leverages
additional information from an external set of variables to identify treatment effects for
(potentially) any other population, as long as the CIA holds.

AR describe a setting with a single-cutoff RD design. Leveraging existing results
in the RD literature, it is possible to extend such setting to the case with more than
one cutoff. If no unit is located exactly at each cutoff (exogenously determined cutoffs),
all the results in Cattaneo et al. (2021) hold and a simple “Normalizing-and-pooling”
(NP) estimator - together with a vector of covariates satisfying the CIA - can be used to
extrapolate treatment effects away from the cutoff. If instead a marginally exposed unit
is located exactly at each cutoff (endogenously determined cutoffs), the identification of
average causal effects could be troublesome (Fort, Ichino, Rettore, and Zanella 2022).
In this case the probability limit of the standard NP estimator may differ from the
desired causal parameter - e.g., the average treatment effect at the cutoff - despite
identification conditions holding at each single cutoff. The suggested solution is to
recover identification using a “Site Fixed Effect” (SFE) estimation strategy. The SFE
estimator can be obtained by augmenting the standard RD regression with fixed effects
at the site level, where a “site” is defined as the group of units facing the same cutoff.

In addition, getaway is equipped with a data-driven algorithm to search for a vec-
tor of covariates that satisfies the CIA. This algorithm has been originally proposed to
choose a model for the propensity score in Imbens and Rubin (2015). At each itera-
tion, the algorithm selects the covariate that makes the CIA condition more likely to
be satisfied, which turns out to be the covariate with the highest p-value (lowest test
statistic) when testing the CIA implications in the data. Although the proposed algo-
rithm performs multiple hypothesis tests, I explicitly do not rely on any form of multiple
testing adjustment. The reason is that the algorithm aims at being conservative, thus
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rejecting the null more often than the level of the test would simply add some redundant
covariates to the ones selected to satisfy the CIA condition.

Finally, the article describe each of the six different commands contained in getaway:
ciasearch applies a data-driven algorithm that selects an adequate set of covariates to
“get away” from the cutoff; ciatest tests the CIA assumption for a given set of covari-
ates; ciares produces graphical visualization of an implication of the CIA; ciacs finds
the common support region and reports histograms for the estimated propensity score;
getaway parametrically estimates treatment effects away from the cutoff; getawayplot
plots the estimated potential outcomes as functions of the score variable.

The rest of the article is organized as follows. Section 2 gives an overview of The
methods implemented in the getaway package. Sections 3-8 describe the syntax of
ciasearch, ciatest, ciacs, ciares, getaway, and getawayplot, respectively. Section
9 gives numerical illustrations, and Section 10 concludes. The latest version of this
software can be found at https://github.com/filippopalomba/getaway-package.

2 Overview of Methods

In a RD design all observed units receive a score. The score (or running variable) is the
dimension along which units are ordered and assigned to the treatment or the control
group. Units with a value of the score above the cutoff are assigned to treatment, those
with score values lower than the cutoff are assigned to the control group.1

To formalize, let i ∈ {1, 2, . . . , n} be an index for the observed units, Yi be an
outcome variable of interest, Di be a dummy variable denoting assignment to treatment,
Xi be the (scalar) running variable, and c the cutoff.2 In a RD design, the assignment
to treatment follows a deterministic rule known at least to the researcher, i.e.,

Di =

{
1, if Xi ≥ c

0, if Xi < c
. (1)

If there is full compliance with the treatment, which means that assignment to
treatment and actual treatment status are identical, the RD design is said to be sharp.
If this is not the case, then the RD design with imperfect compliance is called fuzzy.3

2.1 Treatment effect at the cutoff

The key feature of the RD design is that the probability of being assigned to the treat-
ment conditional on the score changes discontinuously at the cutoff. Indeed, the RD

1. For simplicity, I assume that assignment to treatment is a non-decreasing function of the score. Of
course, the opposite holds if units with low values are assigned to treatment.

2. The reader interested in the case of multiple running variables should refer to Keele and Titiunik
(2015), Cattaneo, Idrobo, and Titiunik (2019), and references therein.

3. For brevity, in this work I describe only the sharp case, but all the arguments presented here hold
also for the fuzzy case with appropriate modifications.
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design exploits this source of exogenous variation to identify an average treatment ef-
fect locally at the cutoff. Drawing on the potential outcome framework (Rubin 1974),
I define Yi(0) and Yi(1) as the potential outcomes that would be observed if Di = 0 or
Di = 1, respectively. Hence, it is possible to define the observed outcome as

Yi = Yi(1)Di + Yi(0)(1−Di),

and the local average treatment effect as

τ RD := E [Yi(1)− Yi(0) | Xi = c]. (2)

From (2), it follows that to identify τ RD, a researcher would have to compare treat-
ment and control units when Xi = c. However, the RD design constitutes an extreme
case of lack of common support, as units belonging to the treatment group have different
score values from units in the control group. To solve this problem, Hahn et al. (2001)
propose to compare units laying immediately to the right and to the left of the cutoff.
This can be seen as a local random experiment. Thus, these units should be similar in
terms of observable and unobservable characteristics, minimizing selection bias.

The authors show that τ RD is identified as long as the following two assumptions
hold:

1. The probability of receiving the treatment jumps at the cutoff c, i.e.

lim
x ↓ c

Pr(Di = 1 | Xi = x) ̸= lim
x ↑ c

Pr(Di = 1 | Xi = x)

2. Potential outcomes are continuous at the cutoff, that is

lim
x→ c

E [Yi(0) | Xi = x] , lim
x→ c

E [Yi(1) | Xi = x]

are continuous in Xi at c

In particular, the local average treatment effect is identified as

τ RD = E [Yi(1)− Yi(0) | Xi = c] = lim
x ↓ c

E [Yi | Xi = x]− lim
x ↑ c

E [Yi | Xi = x].

In practice, estimation of τ RD requires choosing an appropriate bandwidth for the
running variable. A bandwidth is a segment of width h in the support of the running
variable that defines the units used for estimation, i.e. those units such that Xi ∈
[c − h, c + h]. Choosing the bandwidth h entails a bias-variance trade-off. Indeed,
choosing a wider bandwidth (large h) uses more units to estimate τ RD (lower variance),
but includes units that are far from the cutoff and may differ sensibly in terms of
observable and unobservable characteristics (higher bias). The opposite holds for a
smaller bandwidth.4

4. The reader interested in how to find the optimal bandwidth may want to refer to Imbens and
Kalyanaraman (2012), Calonico, Cattaneo, and Titiunik (2014), Cattaneo, Frandsen, and Titiunik
(2015), or Armstrong and Kolesár (2018). Moreover, in this work I assume for simplicity a sym-
metric bandwidth on each side of the cutoff. Generalizations to different bandwidths on each side
of the cutoff (hL ̸= hR) are straightforward and are an available option in the getaway package.
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For this reason, despite having strong internal validity, standard RD designs may
lack external validity. By construction the causal parameter τ RD is local, as it measures
the average treatment effect for units having Xi = c. Without imposing additional
assumptions or exploiting further information, nothing can be said about units with
different values of the running variable.

2.2 Treatment effect away from the cutoff

The RD estimator can be thought of as a special case of selection on observables (Heck-
man, Lalonde, and Smith 1999). Indeed, in RD designs omitted variable bias can only
stem from the running variable Xi (Goldberger 2008). Large differences in the score of
two units are likely to reflect discrepancies in terms of observables and unobservables.
Ultimately, this is why (i) RD designs only rely on units close to the cutoff to esti-
mate τ RD, (ii) comparing units away from the cutoff is liable to selection bias, and (iii)
identification and estimation become harder when the target is a causal parameter of a
population broader than the one composed of units at the cutoff.

Identification

AR build on the intuition developed in Goldberger (2008) and propose to identify and
estimate treatment effects away from the cutoff relying on a set of predictors of the
dependent variable other than the running variable. Using notation from Lee (2008),
the authors model the running variable Xi as a measurable function g(·, ·) of some
observed (wi) and unobserved (ui) covariates, i.e., Xi = g(wi,ui). In this model,
conditional on wi, the only randomness in Xi, hence in Di, comes through ui. If the
observable predictors wi make the running variable ignorable - that is, independent of
potential outcomes - then it is possible to use them to move away from the cutoff. Such
a condition is termed the “conditional independence assumption” and it holds if and
only if

E [Yi(j) | Xi,wi] = E [Yi(j) | wi], j = 0, 1, (3)

and

0 < Pr[Di = 1 | wi] < 1, a.s. (4)

In words, condition (3) requires potential outcomes to be independent in mean of
the running variable once the set of covariates wi is taken into account. Condition (4)
is a matching-style common support assumption that requires the treatment dummy to
be non-degenerate within each cell induced by the vector wi. The CIA breaks the link
between the running variable and the potential outcomes, so that the vector wi can
be used in place of the running variable to identify and estimate various causal effects.
This can be done precisely because the only possible source of bias in a RD design is
the running variable. To fix ideas, suppose a researcher is interested in identifying the
treatment effect at Xi ∈ A, where A is a non-empty set contained in the support of the
running variable. In this case the estimand of interest is τA := E [Yi(1)−Yi(0) | Xi ∈ A].
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If (3) and (4) hold, then τA can be estimated as

τA = E [E [Yi | wi, Di = 1]− E[Yi | wi, Di = 0] | Xi ∈ A] (5)

Example

If a researcher is interested in the Average Treatment on the Treated (ATT), then
A = [c,∞) and

τ[c,∞) = E [E [Yi | wi, Di = 1]− E[Yi | wi, Di = 0] | Xi ≥ c]

If the Average Treatment on the Non-Treated (ATNT) is of interest, then A = (−∞, c)
and

τ(−∞,c) = E [E [Yi | wi, Di = 1]− E[Yi | wi, Di = 0] | Xi < c]

Estimation

To find an estimator for τA in (5) it is sufficient to rely on the plug-in principle. The
crucial part regards the estimation of the inner conditional expectation E[Yi | wi, Di].
AR propose two main estimators:

1. The conditional expectation E[Yi | wi, Di] can be modeled linearly in wi as

E [Yi | wi, Di = 1] = w′
iβR, E [Yi | wi, Di = 0] = w′

iβL.

Then, substituting it in (5) we get the following linear reweighting estimator (Kline
2011)

E [Yi(1)− Yi(0) | Xi ∈ A] = (βR − βL)
′E [wi | Xi ∈ A]. (6)

2. A propensity score weighting estimator in the spirit of Hirano et al. (2003)

E [Yi(1)− Yi(0) | Xi ∈ A] = E
[

Yi[Di − p(Xi)]

p(Xi)[1− p(Xi)]
· Pr[Xi ∈ A | wi]

Pr[Xi ∈ A]

]
, (7)

where p(Xi) := Pr[Di = 1 | Xi] is a probability model for the propensity score.

Testing

The CIA in (3) has (partially) testable implications because the RD design provides
a test for the assumption that conditioning on the vector of observables wi removes
selection bias. Indeed, in RD designs the running variable is the only source of omitted
variable bias, hence ifwi breaks the link between the potential outcomes and the running
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variable there is no omitted variable bias. Thus, testing the CIA boils down to testing if
Xi has a statistically significant effect on Yi conditionally on wi. Formally, implications
of the CIA can be tested empirically by running the following regressions:

Yi = αL +XiγL,1 + · · ·+Xp
i γL,p +w′

iβL + εi, if Xi < c,

Yi = αR +XiγR,1 + · · ·+Xq
i γR,q +w′

iβR + νi, if Xi ≥ c, (8)

and testing the null hypotheses that

H
(L)
0 : γL,1 = · · · = γL,p = 0 and H

(R)
0 : γR,1 = · · · = γR,q = 0,

where p ∈ N and q ∈ N are the degree of the polynomial in the score to the left and
to the right of the cutoff, respectively. If there is not enough evidence to reject these
null hypotheses, then there is no evidence in favor of the CIA not being satisfied by the
vector of covariates wi.

2.3 Regression discontinuity with multiple rankings

In the recent literature, the case of RD with multiple cutoffs has received a lot of
attention (see Cattaneo, Titiunik, and Vazquez-Bare 2020, and references therein). A
popular practice is to normalize all the cutoffs to a common value (zero) and pool
together units belonging to different rankings. This practice defines the NP estimator
mentioned previously.5 Formally, let Xis be the running variable for unit i in site
s ∈ {1, 2, . . . , S} and cs be the cutoff value that determines assignment to treatment
in site (ranking) s. Often, researchers create a normalized version of the score using

the formula X̃i = Xis − cs. Normalizing-and-pooling allows researchers to rewrite the
assignment-to-treatment function as Di = 1(X̃i > 0). By doing so, a single estimate
is obtained using all available data and, hence, increasing the statistical power and
precision of the estimates. Cattaneo et al. (2021) outlines that the NP estimand is a
weighted average of the RD estimates at each cutoff, where the weights depend on the
number of units around each cutoff. This means that this estimand averages out any
source of treatment heterogeneity, so attention should be paid when interpreting this
causal parameter.

An example of this setting is a sequence of calls for tenders conducted in different
areas of a country where local firms are ranked according to their bids. Firms operat-
ing in different regions will not compete against each other and different cutoff values
may determine their assignment to treatment. This is not problematic if the cutoff is
determined ex-ante in each ranking as in the setting described in Cattaneo et al. (2021)
(so called exogenous cutoff ). If instead the cutoff coincides with the marginal subject
exposed to treatment in each ranking (endogenous cutoff ), the traditional NP estimator
does not estimate any causal parameter of interest.

5. In principle, it is possible to estimate a separate RD at each cutoff. However, in practice it usually
happens that the available sample is limited in size and RDs estimated in this way typically lack
statistical power.
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As pointed out in Fort, Ichino, Rettore, and Zanella (2022), in settings where the
cutoffs are determined endogenously, the NP estimator uses inappropriate weights for
those observations above the cutoff. This issue arises from the fact that the score
variable has a mass point exactly at the cutoff. As a consequence, the NP estimator is
biased with respect to τ RD and the size of the bias depends on the covariance between the
potential outcomes of units when treated and their relative frequency, in a neighborhood
of the cutoff. This bias goes away asymptotically, as the number of units in each ranking
goes to infinity, which is unlikely the case in most applications. The safest solution to
this problem is introducing fixed-effect dummies at the site level. In this spirit, the
getaway package extends the work done in AR to the multiple cutoff case introducing
the possibility to add site-level fixed effects to the RD estimator.

2.4 Data-driven algorithm

The package relies on a data-driven algorithm in the spirit of (Imbens and Rubin 2015,
Chapter 13.3) that searches for a vector of covariates satisfying the CIA condition.
Formally, suppose there is a set of k covariates C, which is the union of two disjoint sets:

• a set C1 ⊂ C containing k1 < k covariates to be included in wi independently
of their relationship with the outcome variable. These are covariates that the
researcher views as a priori important in explaining the selection bias between
units with high and low values of the score. In principle, in the absence of a
relevant theory driving the choice of these covariates or simply if the researcher
has little substantive knowledge, it could be that C1 = ∅.

• a set C2 ⊆ C containing k2 ≤ k candidate covariates that could be included in wi

with the purpose of making the running variable ignorable.

Example

Suppose that Xi is a score denoting the quality of a project of a firm, Yi is em-
ployment growth, and the natural experiment takes place in Italy. Previous theoretical
and empirical work suggests that employment growth is inversely related to firm’s age
(Jovanovic 1982). In addition, the Italian context is characterized by a prevalence of
very small firms (Bartelsman, Scarpetta, and Schivardi 2005), thus the presence of man-
agers and white collar workers may be an important source of competitive advantage.
Therefore, a researcher might want to include firm size, firm age, presence of manager
in the firm, and presence of white collar workers in the firm in C1.

The algorithm searches for sets C̃L, C̃R ⊆ C2 such that C̃L ∪ C1 and C̃R ∪ C1 make
the running variable ignorable to the left and to the right of the cutoff, respectively.
The algorithm is composed by the following steps:



F. Palomba 9

1. let ι be the number of covariates in C2 that have already been selected.6 Run the
following set of regressions for j = 1, . . . , k2 − ι,

Yis =

p∑
ℓ=1

Xℓ
isγL,ℓ + z′L,isδL + ω

(j)
is µL,j + αL,s + εis, if Xis < cs,

Yis =

q∑
ℓ=1

Xℓ
isγR,ℓ + z′R,isδR + ω

(j)
is µR,j + αR,s + νis, if Xis ≥ cs, (9)

where z•,is is the vector of k1 + ι covariates that are have already been included,
h is the bandwidth, respectively, α•,s are fixed effects at the site level (Fort et al.

2022), and ω
(j)
is ∈ C2 is the j-th candidate covariate.7 Notice that the RD design

with a single cutoff or with multiple exogenous cutoffs are a particular specification
of (9), in which the site fixed effects α•,s become a pooled constant α•.

2. For each regression in (9) conduct an F -test for the null hypothesis that the CIA
holds (separately) on each side of the cutoff:

H
(L)
0 : γL,1 = · · · = γL,p = 0 and H

(R)
0 : γR,1 = · · · = γR,q = 0,

and store the two F -statistics F j,L and F j,R.

3. Select the two covariates associated to each smallest F -statistic in the two sets

FL = {F 1,L, F 2,L, . . . , F k2−ι,L}, FR = {F 1,R, F 2,R, . . . , F k2−ι,R}.

Denote these two variables with ω⋆
L,is and ω⋆

R,is, respectively. Notice that nothing
prevents the variable with the smallest F -statistic on the left of the cutoff to differ
from one on the right of the cutoff, i.e., it can be that ω⋆

L,is ̸= ω⋆
R,is.

4. Add ω⋆
L,is and ω⋆

R,is to C̃L and C̃R, respectively, and to z•,is in (9).

5. Repeat steps 1-4 until one of the following stopping criteria is reached:

• the null hypothesis that the running variable is not significantly different from
0 cannot be rejected at the α% level, where α is chosen by the researcher;

• all the covariates in C̃ have been included in C̃L and C̃R.

The basic idea behind the algorithm is to implement a greedy approach (James,
Witten, Hastie, Tibshirani, and Taylor 2013), meaning that the best variable is selected
at each particular step, rather than looking ahead and picking a variable that will lead

6. Alternatively, ι can be thought of as the iteration of the algorithm minus one.
7. When the algorithm starts (ι = 0) we run the regression of Yis onto the covariates in C1, a

polynomial in the running variable, (if present) the site fixed effects, and we add one single candidate
covariate.
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to a larger reduction in the loss function in some future step. This is done to avoid
testing all the possible combinations of the elements of C2.8

Three caveats are needed. First, as already outlined, it can happen that the algo-
rithm selects two different sets of covariates on each side of the cutoff. The proposed
heuristic here is to define the final set of covariates as the union between the sets of
covariates satisfying the CIA on each side of the cutoff.

Second, in some cases the heuristic approach above might not work. Indeed, while
not being a problem in population, in the sample it could be that the union of two
non-identical sets of covariates satisfying the CIA on separate sides of the cutoff does
not satisfy the CIA simultaneously on both sides. As such, a more stringent version of
the algorithm can be implemented. This alternative algorithm has a different step 3, in
which it selects a unique covariate ω̃i that minimizes a single loss function of the form
L(F j,L,F j,R), rather than minimizing L(FL) and L(FR) separately. When required
to chose a single covariate at each step, the package getaway uses L(F j,L,F j,R) =
min{F j,L,F j,R}. On the one hand, this feature makes the algorithm more demanding,
as it selects a set of covariates that satisfies the CIA condition on both sides of the cutoff
at the same time. On the other hand, this version has the advantage of not relying on
the heuristic solution of using the union of the two selected groups of covariates.

Third, an obvious but well due remark. If the algorithm above does not yield a set of
covariates that satisfies the CIA, then there are two solutions: either the researcher gives
up extrapolation away from the cutoff or more information (i.e., variables) is gathered.
A similar remark applies in the case in which the common support condition 4 is not
satisfied.

3 The ciasearch command

This section describes the syntax of the command ciasearch, that implements the
algorithm described in Section 2.4 that searches for a vector of covariates w satisfying
the CIA condition (3). The common support condition (4) can be verified using the
command ciacs (see Section 6) once a candidate w has been found with ciasearch.

3.1 Syntax

ciasearch varlist
[
if

] [
in

]
outcome(varname) score(varname)

bandwidth(string)
[

cutoff(#) included(varlist) poly(numlist) robust

vce(varname) site(varname) alpha(#) quad unique force noprint
]

8. This exercise would soon become intractable from a computational point of view as it involves

estimating
∑k2

i=1

(k2
i

)
different regressions. To quantify this issue, with 10 covariates, the number

of different combinations to be tested for is 1023. This case is still tractable. However, adding just
10 other covariates drives the number of combinations over 1 million.
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where varlist specifies the set of candidates C2 and the option included eventually
specifies the set of always included covariates C1.

3.2 Options

outcome(varname) specifies the dependent variable of interest.

score(varname) specifies the running variable.

bandwidth(#) specifies the value for the bandwidth to be used for estimation. The
user can specify a different bandwidth for each side.

cutoff(#) specifies the value of the cutoff. Default is c(0). The cutoff value is
subtracted from the score variable and the bandwidth. In case multiple cutoffs are
present, provide the pooled cutoff.

included(varlist) specifies the set of covariates that are always included in the testing
regression.

poly(numlist) specifies the degree of the polynomial function in the running variable.
The user can specify a different degree for each side. Default is p(1 1).

robust estimates heteroskedasticity-robust standard errors.

vce(varname) clusters standard errors at the specified level.

site(varname) specifies the variable identifying the site to add site fixed effects.

alpha(#) specifies the level of I-type error in the CIA test. Default is alpha(0.1).
In this case, the higher the value of alpha the easier will be to reject the null
hypothesis that the CIA condition holds. Notice that alpha implicitly defines the
threshold value for algorithm convergence.

quad adds to varlist squared terms of each (non-dichotomic) covariate in varlist and
interactions of all the covariates in varlist

unique runs a single algorithm on both sides. This version selects a unique set of
covariates that satisfies the CIA condition on both sides of the cutoff at the same
time.

force with this option switched on, the algorithm forgets the value of the loss function
at the iteration j − 1 and selects the covariate providing the lower value of the loss
function at iteration j. In other words, with this option switched on, the algorithm
searches for the covariate that minimizes the loss function within a certain iteration.
This can make the loss function non-strictly decreasing in the number of iterations,
but allows the algorithm to select covariates that provide a sensible gain only after
some steps.

noprint suppresses within-iteration results.
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4 The ciatest command

This section describes the syntax of the ciatest command, which tests whether the CIA
condition (3) holds for a given input vector of covariates wi. The command ciatest is
the “manual” version of ciasearch.

4.1 Syntax

ciatest varlist
[
if

] [
in

]
outcome(varname) score(varname)

bandwidth(string)
[

cutoff(#) poly(numlist) robust vce(varname)

site(varname) details noise
]

where varlistspecifies the vector wi.

4.2 Options

outcome(varname) specifies the dependent variable of interest.

score(varname) specifies the running variable.

bandwidth(#) specifies the value for the bandwidth to be used for estimation. The
user can specify a different bandwidth for each side.

cutoff(#) specifies the value of the cutoff. Default is c(0). The cutoff value is
subtracted from the score variable and the bandwidth. In case multiple cutoffs are
present, provide the pooled cutoff.

poly(numlist) specifies the degree of the polynomial function in the running variable.
The user can specify a different degree for each side. Default is p(1 1).

robust estimates heteroskedasticity-robust standard errors.

vce(varname) clusters standard errors at the specified level.

site(varname) specifies the variable identifying the site to add site fixed effects.

alpha(#) specifies the level of I-type error in the CIA test. Default is alpha(0.1).
In this case, the higher the value of alpha the easier will be to reject the null
hypothesis that the CIA condition holds. Notice that alpha implicitly defines the
threshold value for algorithm convergence.

details reports results of additional tests in the output. The details option reports
the main statistics of the simple regression of outcome on score in both the full-
sample and the restricted-sample. The restricted-sample is the sample composed
by all units with no missing values in outcome, score, and varlist , whilst the full-
sample is defined as those units with no missing entries just in outcome and score.
This additional check is particularly useful when there are missing values in varlist .
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noise prints all testing regression outputs.

5 The ciares command

This section describes the syntax of the ciares command, which provides a graphical
visualization the CIA condition (3) for a given input vector of covariates wi.

5.1 Syntax

ciares varlist
[
if

] [
in

]
outcome(varname) score(varname) bandwidth(string)[

cutoff(#) nbins(numlist) site(varname) cmpr(#) gphoptions(string)
]

where varlist specifies the vector wi.

5.2 Options

outcome(varname) specifies the dependent variable of interest.

score(varname) specifies the running variable.

bandwidth(#) specifies the value for the bandwidth to be used for estimation. The
user can specify a different bandwidth for each side.

cutoff(#) specifies the value of the cutoff. Default is c(0). The cutoff value is
subtracted from the score variable and the bandwidth. In case multiple cutoffs are
present, provide the pooled cutoff.

nbins(numlist) specifies the number of bins in which the average of residuals should be
computed. The number of bins can be specified for each side of the cutoff. Default
is nbins(10 10).

site(varname) specifies the variable identifying the site to add site fixed effects.

cmpr(#) adds the conditional regression function of outcome on the score. The form
of polynomials on the left and on the right can be modelled independently - eg.
cmpr(2 3) for a second order polynomial on the left and a third order on the right.

gphoptions(string) specifies graphical options to be passed on to the underlying graph
command. These options overwrite the default formatting options of the command.

6 The ciacs command

This function describes the syntax of the command ciacs, that provides a graphical
visualization of the common support condition (4) required to validate the CIA. The
command ciacs allows the user to fit a logistic or probit model for the treatment variable
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Di using wi (and fixed effects if required) as explanatory variables. Furthermore, ciacs
allows to graphically visualize whether the common support assumption holds.

6.1 Syntax

ciacs varlist
[
if

] [
in

]
outcome(varname) assign(varname) score(varname)

bandwidth(string)
[

cutoff(#) nbins(numlist) site(varname) asis

gphoptions(string) pscore(string) probit kdensity nograph
]

where varlist specifies the vector wi.

6.2 Options

outcome(varname) specifies the dependent variable of interest.

assign(varname) sets the assignment to treatment variable.

score(varname) specifies the running variable.

bandwidth(#) specifies the value for the bandwidth to be used for estimation. The
user can specify a different bandwidth for each side.

cutoff(#) specifies the value of the cutoff. Default is c(0). The cutoff value is
subtracted from the score variable and the bandwidth. In case multiple cutoffs are
present, provide the pooled cutoff.

nbins(numlist) specifies the number of bins in which the average of residuals should be
computed. The number of bins can be specified for each side of the cutoff. Default
is nbins(10 10).

site(varname) specifies the variable identifying the site to add site fixed effects.

asis forces retention of perfect predictor variables and their associated perfectly pre-
dicted observations.

gphoptions(string) specifies graphical options to be passed on to the underlying graph
command. These options overwrite the default formatting options of the command.

pscore(string) specifies the name of the variable containing the pscore. This variable
is added to the current dataset.

probit implements a probit model to estimate the pscore.

kdensity displays kernel densities rather than histograms, which is the default.

nograph suppresses any graphical output.
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7 The getaway command

This section describes the syntax of the getaway command, which allows the user to
estimate and plot treatment effects away from the cutoff. The command implements
either the linear reweighting estimator (6) or the propensity score reweighting estimator
(7). By default, it estimates Average Treatment effect on the Treated (ATT) and
Average Treatment effect on the Non-Treated (ATNT), but it also allows for estimation
of other causal parameters of interest on finer intervals of the running variable. Indeed,
the command allows to partition the support of the running variable in quantile-spaced
bins and to estimate treatment effects within these bins. Obtaining these estimates
following (6) is straightforward.

7.1 Syntax

getaway varlist
[
if

] [
in

]
outcome(varname) score(varname)

bandwidth(string)
[

cutoff(#) method(string) site(varname)

nquant(numlist) bootrep(#) qtleplot gphoptions(string) gevar(string)

asis
]

where varlist specifies the vector wi.

7.2 Options

outcome(varname) specifies the dependent variable of interest.

assign(varname)sets the assignment to treatment variable.

score(varname) specifies the running variable.

bandwidth(#) specifies the value for the bandwidth to be used for estimation. The
user can specify a different bandwidth for each side.

cutoff(#) specifies the value of the cutoff. Default is c(0). The cutoff value is
subtracted from the score variable and the bandwidth. In case multiple cutoffs are
present, provide the pooled cutoff.

method(string) allows to choose the estimation method between Linear Reweighting
Estimator (linear) and Propensity Score Weighting Estimator (pscore). Default is
method(linear).

site(varname) specifies the variable identifying the site to add site fixed effects.

bootrep(#) sets the number of replications of the non-parametric bootstrap. Default
is bootrep(0). If site is specified a non-parametric block bootstrap is used.

nquant(numlist) specifies the number of quantiles in which the treatment effect must
be estimated. It can be specified separately for each side of the cutoff. Default is
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nquant(0). This option is mandatory if qtleplot is specified.

qtleplot plots estimated treatment effect over running variable quantiles together with
bootstrapped standard errors. Also estimates and bootstrapped standard errors of
the ATT and ATNT are reported.

gphoptions(string) specifies graphical options to be passed on to the underlying graph
command. These options overwrite the default formatting options of the command.

genvar(string) specifies the name of the variable containing the distribution of treat-
ment effects. Only with method(linear) option.

asis forces retention of perfect predictor variables and their associated perfectly pre-
dicted observations in p-score estimation. To be used only with method(pscore).

8 The getawayplot command

This section explains the syntax of the getawayplot command, which plots non-parametric
estimates of the actual and counterfactual regression functions using kernel-weighted lo-
cal polynomial smoothers.

8.1 Syntax

getawayplot varlist
[
if

] [
in

]
outcome(varname) score(varname)

bandwidth(string)
[

cutoff(#) kernel(string) site(varname)

degree(numlist) nbins(numlist) gphoptions(string)
]

where varlist specifies the vector wi.

8.2 Options

outcome(varname) specifies the dependent variable of interest.

assign(varname)sets the assignment to treatment variable.

score(varname) specifies the running variable.

bandwidth(#) specifies the value for the bandwidth to be used for estimation. The
user can specify a different bandwidth for each side.

cutoff(#) specifies the value of the cutoff. Default is c(0). The cutoff value is
subtracted from the score variable and the bandwidth. In case multiple cutoffs are
present, provide the pooled cutoff.

kernel(string) specifies the kernel function. The default is kernel(epanechnikov).
To see the full list of available kernel functions see lpoly.
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site(varname) specifies the variable identifying the site to add site fixed effects.

degree(numlist) specifies the degree of the local polynomial smooth. The default is
degree(0).

nbins(numlist) specifies the number of bins for which the counterfactual average is
shown in the final graph. Default is nbins(10 10).

clevel(#) specifies the confidence level for the confidence bands reported in the plot.
Default is clevel(95).

nose if specified standard errors are not computed and plotted.

gphoptions(string) specifies graphical options to be passed on to the underlying graph
command. These options overwrite the default formatting options of the command.

9 Illustration of Methods

This section illustrates the main features of the getaway package using a simulated
dataset, simulated getaway.dta. The dataset contains n = 2, 000 observations that
are divided in S = 5 different groups (sites) of equal size. In this dataset, Y is the
outcome variable, X is the standardized running variable, T is the treatment dummy,
cutoff is a variable containing the corresponding cutoff for each unit, site is a variable
containing the site identifier for each unit, and w1-w10 are 10 covariates (henceforth,
ωi, i = 1, . . . , 10) to be used to validate the CIA assumption. In each site the cutoff is
defined endogenously as cs = median(Xis).

. use "data/simulated_getaway.dta", clear

.

. summarize Y T X cutoff

Variable Obs Mean Std. dev. Min Max

Y 2,000 100.5602 54.3153 -15.2992 309.6667
T 2,000 .5 .500125 0 1
X 2,000 .0463897 2.058906 -6.855689 6.944369

cutoff 2,000 .9372802 .0830187 .81286 1.039276

. tabulate cutoff

Site Cutoff Freq. Percent Cum.

.81286 400 20.00 20.00
.8890854 400 20.00 40.00
.9293263 400 20.00 60.00
1.015854 400 20.00 80.00
1.039276 400 20.00 100.00

Total 2,000 100.00

.

. twoway (scatter Y X if site == 1, mc(cyan) m(o)) ///
> (scatter Y X if site == 2, mc(midblue) m(o)) ///
> (scatter Y X if site == 3, mc(ebblue) m(o)) ///
> (scatter Y X if site == 4, mc(navy) m(o)) ///
> (scatter Y X if site == 5, mc(dknavy) m(o)), ///
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> xline(0, lc(red)) ylabel(,nogrid) ///
> xtitle("Score") ytitle("Outcome") xlabel(-6(3)6) legend(off)

Each covariate is generated according to ωi
iid∼ N(µi, 1), where each µi has been

extracted from a U(−1, 1). The running variable is created as

Xis = ω1,isϕ1 + ω2,isϕ2 + νis, νis
iid∼ N(0, 1), j = 1, 2,

where ϕ1, ϕ2 are extracted from a U(1, 2). Let ωis := (ω1,is, ω2,is)
′. The outcome variable

is simulated according to the following data generating process (DGP)

Yis = αs + Tisβ + ω′
isγ + ω′

isωisδ + Tisω
′
isλ+ Tisω

′
isωisρ+ εis

where εis
iid∼ N(0, 10), β = 50,γ = (5, 5)′, δ = 0.5,λ = (1, 1)′, ρ = 2. Finally, the fixed

effect is αs = 20s, s = 1, . . . , 5. Figure 1a shows the (averaged across groups) potential
outcomes as a function of the running variable. The figure shows that the DGP features
heterogeneous treatment effects with respect to the score (red dashed line). Figure 1b
plots the observed outcome variable for each site (the lightest blue is the group with
s = 1, the darkest s = 5).
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Figure 1: Simulation Results

The data generating process considered in this example implies that

wis := (ω1,is, ω2,is, ω
2
1,is, ω

2
2,is, ω1,is, ω2,is)

is the vector of covariates that satisfies the CIA condition (3).

The command ciasearch allows to search among the 10 “candidate” covariates w1-
w10 the ones (if any) satisfying the CIA. The command, through the option quad also
tests includes interactions and quadratic terms among the candidate covariates. The
basic syntax is illustrated in the following snippet.9

9. In this case, I choose the bandwidth to be h = 7 just to include the whole sample.
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. ciasearch w1 w2 w3 w4 w5 w6 w7 w8 w9 w10, o(Y) s(X) c(0) b(7) ///
> site(site) quad noprint p(2) alpha(0.5)

Algorithm Path:

Searching for a set of covariates validating the CIA on the left of the cutoff ...
Iteration #1 finished || Loss Function (>.5): 0.000 || Selected w2
Iteration #2 finished || Loss Function (>.5): 0.211 || Selected w1
Iteration #3 finished || Loss Function (>.5): 0.718 || Selected w2_sq

Searching for a set of covariates validating the CIA on the right of the cutoff ...
Iteration #1 finished || Loss Function (>.5): 0.000 || Selected w2_sq
Iteration #2 finished || Loss Function (>.5): 0.000 || Selected w2Xw1
Iteration #3 finished || Loss Function (>.5): 0.051 || Selected w1
Iteration #4 finished || Loss Function (>.5): 0.127 || Selected w2
Iteration #5 finished || Loss Function (>.5): 0.840 || Selected w1_sq

Results
Algorithm Converged - Selected Covariates on the Left: w2 w1 w2_sq
Algorithm Converged - Selected Covariates on the Right: w2_sq w2Xw1 w1 w2 w1_sq

By default the algorithm searches for a set of covariates satisfying the CIA separately
on each side of the cutoff. The command displays the result of each iteration, reporting
the loss function value (in this case, minus the p-value of the test described in step 2 of
the algorithm in Section 3) and the selected covariate, i.e., the one minimizing the loss
function. In the particular case reported in the snippet, two different sets of covariates
are selected on the two sides.10 For circumstances like this one, the suggested rule of
thumb is to test whether the CIA holds on both sides using the union of the two sets
and eventually proceed further with the analysis using this joint set. The results of such
test are presented in the next snippet.

. generate w1sq = w1^2

. generate w2sq = w2^2

. generate w2Xw1 = w2*w1

.

. ciatest w1 w2 w1sq w2sq w2Xw1, o(Y) s(X) c(0) b(7) p(2) site(site) alpha(0.5)

CIA Test Results
LEFT RIGHT

Coef_1 -.50775874 -.15850905
Coef_2 -.1296132 -.01281982
F-stat .22724811 .1741112

p-value .79676472 .84022923
N 1000 1000

CIA condition satisfied! (alpha = .5)

The output above shows the main statistics obtained from running a regression
similar to (9) on each side of the cutoff and testing the CIA. The left column reports
the results obtained to the left, and the right column the results to the right. The option
p(2) fits a polynomial of second order in the running variable and the first two rows

10. The chosen set of covariates on the left is a sub-vector of wis. This is because the algorithm selects
the first vector that satisfies the stopping rule, which is reaching a p-value of at least 0.5 (with the
alpha(0.5) option).
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display the regression coefficients corresponding to Xis and X2
is. The third and fourth

row summarize the hypothesis tests by showing the F -statistic and the corresponding
p-value. The last row reports the number of observation used.

Graphical evidence can be supportive to the statistical evidence obtained with
ciatest. The ciares command allows the user to test graphically an implication
of the CIA, according to the following procedure:

• run the regressions of the outcome variable on the vector of covariates wis to the
left and to the right of the cutoff, i.e.

Yis = αL,s +w′
isϕL + εis, if −Xis < cs,

Yis = αR,s +w′
isϕR + νis, if Xis ≥ cs,

where αj,s, j = L,R are site fixed effects that may be included.

• store the residuals of these regressions, namely

eLis := (Yis − α̂L,s −w′
isϕ̂L), eRis := (Yis − α̂R,s −w′

isϕ̂R).

• plot eLis and eRis on the running variable Xis.

The implication being heuristically tested here is that once the variation in wis is taken
into account, if the CIA is satisfied, the running should have no explanatory power on
the outcome variable. Therefore, the residuals (eLi , e

R
i ) should be orthogonal to the

running variable Xi. This means that if the CIA is satisfied, plotting the residuals over
the score should ideally yield a horizontal line. Due to sampling variation, this never
happens in practice. Hence, to correctly visualize this relationship and to sweep away
sampling error, the command partitions the running variable in equally-spaced bins
and computes within-bin averages of the residuals. As Figure 2 shows, ciares displays
within-bin averages together with the linear regressions of the residuals on the running
variable. The option cmpr(1 1) also plots the simple linear regression of Yis on Xis for
comparison.

. ciares w1 w2 w1sq w2sq w2Xw1, o(Y) s(X) b(7) site(site) nb(10 10) ///
> gphoptions(xlabel(-6(3)6) title("")) cmpr(1 1)

Up to this point just the first of the two conditions underlying the CIA has been
tested and validated. However, also the common support condition (4) needs to be
checked. The command ciacs serves this precise purpose.

. ciacs w1 w2 w1sq w2sq w2Xw1, o(Y) assign(T) s(X) c(0) b(7) ///
> site(site) pscore(pscore) gphoptions(title(""))

Common Support
N Out of CS Lower Bound Upper Bound

Control 1000 42 .00060943 .98419487
Treatment 1000 280 .00496089 .99999964

The common support is verified in the interval [0.0050,0.9842],
which contains 958 control units and 720 treated units.
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Figure 2: Visualization of the CIA

The command estimates the propensity score for all units and computes the bounds for
the common support as

lb := max

{
min

i:Tis=0
p̂is, min

i:Tis=1
p̂is

}
, and ub := min

{
max

i:Tis=0
p̂is, max

i:Tis=1
p̂is

}
,

where p̂is is the estimated propensity score. Using these bounds the command identifies
42 control units and 280 treatment units that are outside the commons support region.
Those units should not be considered in the analysis and should be flagged. This can
be easily done in two steps. First, specify the option pscore(varname) that generates
a new variable containing the estimated propensity score. Second, use the bounds of
the common support stored in return list to mark units not in the common support.

. generate incs = pscore >= e(CSmin) & pscore <= e(CSmax)

. tabulate incs T

Treatment Dummy
incs 0 1 Total

0 42 280 322
1 958 720 1,678

Total 1,000 1,000 2,000

In addition, the command ciacs allows the user to visualize the common support
either using histograms or kernel density estimators. Figure 3 shows the result obtained
using histograms.

Now that both condition (3) and condition (4) have been verified, the commands
getaway and getawayplot can be used to extrapolate treatment effects and estimate
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Figure 3: Visualization of Common Support condition

potential outcomes along the support of the running variable, respectively.

. getaway w1 w2 w1sq w2sq w2Xw1, o(Y) s(X) c(0) b(7) site(site) ///
> qtleplot nquant(5 5) boot(100) gphoptions(title("")) genvar(effect_est)
alooo
Bootstrapping standard errors ... (100)

1 2 3 4 5
.................................................. 50
.................................................. 100

Extrapolation Results

Outcome Variable Y
Running Variable X

Number of observations
Treated 1000
Control 1000

Cutoff 0
Bandwidth 7
Bootstrap Iterations 100
Site Fixed Effects site
Method linear

Main Estimates

Estimate SE
ATNT 54.094 0.414
ATT 64.665 1.105

Within-Quantile Estimates

Estimate SE Xlb Xub
Left_1 58.736 1.098 -6.856 -2.589
Left_2 53.448 0.599 -2.584 -1.726
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Left_3 52.461 0.368 -1.726 -1.031
Left_4 52.561 0.219 -1.030 -0.533
Left_5 53.263 0.204 -0.529 -0.001

Right_1 55.723 0.224 0.001 0.532
Right_2 58.078 0.779 0.532 1.099
Right_3 60.577 1.048 1.103 1.789
Right_4 65.985 0.934 1.793 2.658
Right_5 82.963 2.833 2.666 6.944

CIA Covariates: w1 w2 w1sq w2sq w2Xw1
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Figure 4: Estimated treatment effects over the support of the running variable

The command getaway prints the main specifics of the estimation procedure (out-
come variable, running variable, number of observations, cutoff, bandwidth, ...) and
two tables with the results. The first table contains the estimates for average treatment
on the treated τ[0,h) and the average treatment on the non-treated τ(−h,0), together with
bootstrapped standard errors. The second table reports: the treatment effect within
quantiles of the running variable (first column); bootstrapped standard errors (second
column); lower and upper bound of the running variable in each quantile (third and
fourth columns). The running variable is binned in 5 quantiles per side through the
option nquant(5 5). All the information contained in these two tables can also be
visualized in a single graph by specifying the option qtleplot. Figure 4 shows the esti-
mated treatment effect in each quantile of the running variable (red triangles), together
with bootstrapped standard errors (vertical black solid lines) and the estimates of τ[0,h)
(green solid line to the right of the cutoff) and τ(−h,0) (orange solid line to the left of the
cutoff) with their bootstrapped standard errors (dashed horizontal lines). Estimated
treatment effects recover the asymmetric U-shaped true treatment effect function pre-
sented in 1a. Moreover, the option genvar(effect est) creates a new variables called
effect est that contains the treatment effect for each unit estimated according to
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either (6) (default) or (7).

Finally, the command getawayplot uses kernel-weighted local polynomial smoothers
to recover the potential outcomes as functions of the running variable. Figure 5 displays
the estimated potential outcomes as functions of the running variable (red dotted lines).
95% confidence bands are also reported by default. Estimates are obtained fitting kernel-
weighted local polynomials to the predicted value of a regression of the outcome on wis

run separately on each side of the cutoff. Finally, within-bin averages are also reported
(red crosses).

. getawayplot w1 w2 w1sq w2sq w2Xw1, o(Y) s(X) c(0) b(7) k(triangle) ///
> d(2) nb(30) site(site) gphoptions(xlabel(-6(3)6))
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Figure 5: Estimate potential outcomes over the support of the running variable

Comparing Figure 5 with Figure 1a it is possible to graphically compare the goodness
of the estimation procedure.

10 Conclusion

This article introduced the getaway package which estimates treatment effects away
from the cutoff in RD designs under a conditional independence assumption.

Further work on the getaway package is planned. First, the actual package only
works for Sharp RD designs, hence its extension to Fuzzy RD designs is necessary.
Second, there are several other RD designs in the literature in which extrapolation of
treatment effects might turn out to be useful. A non-exhaustive list of examples includes
geographic RDs (Keele and Titiunik 2015), dynamic RDs (Cellini, Ferreira, and Roth-
stein 2010), and difference-in-discontinuities (Grembi, Nannicini, and Troiano 2016).
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Third, at the data of publication of this article, the package getaway estimates the con-
ditional expectation functions of the potential outcomes using two different parametric
alternatives. Next major upgrades of the package should also contain non-parametric
estimators (e.g., Nadaraya-Watson kernel regression, random forest for such functions.
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