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Abstract. Regression discontinuity (RD) designs are highly popular in economic
research because of their strong internal validity and straightforward intuition.
While RD estimates are local in nature, several recent articles propose methods
that generalize RD estimates to units outside a small neighborhood of the cutoff.
In this article, I introduce the getaway package, which implements the method
proposed by Angrist and Rokkanen (2015, Journal of the American Statistical As-
sociation 110: 1331–1344) to extrapolate treatment-effect estimates “away from
the cutoff”, relying on a classical unconfoundedness condition. Additionally, the
package features a data-driven algorithm designed to identify a set of covariates
that fulfills the unconfoundedness assumption. It also incorporates a toolkit in-
tended for testing and visualization purposes.
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1 Introduction
Since its first appearance in Thistlethwaite and Campbell (1960) and rigorous formaliza-
tion in Hahn, Todd, and van der Klaauw (2001), the regression discontinuity (RD) design
has gained extreme popularity in empirical work in several fields of economics: politi-
cal (Lee, Moretti, and Butler 2004; Pettersson-Lidbom 2008; Meyersson 2014; Bronzini
and Iachini 2014); development (Ozier 2018); health (Ludwig and Miller 2007); crime
(Pinotti 2017); education (Angrist and Lavy 1999; Cellini, Ferreira, and Rothstein 2010;
Duflo, Dupas, and Kremer 2011; Pop-Eleches and Urquiola 2013); and public (Lalive
2008; Battistin et al. 2009; Coviello and Mariniello 2014) and corporate finance (Flam-
mer 2015).

In the typical RD design, units are assigned to treatment depending on the value of a
covariate (score or running variable) being above or below a certain threshold (cutoff).
This creates a conditional probability of being assigned to treatment that jumps at
the cutoff point, generating random variation in treatment status that can be used to
identify causal parameters. Intuitively, units whose score value is close to the cutoff can
be thought of as lying on different sides by chance, “as if” they were randomly assigned
to treatment. By comparing their posttreatment outcomes, one can therefore identify
a local average treatment effect (𝜏RD, henceforth).
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Because the above-mentioned identification assumption holds only in a neighbor-
hood of the cutoff, the identified causal parameter refers to a very narrow population.
Recently, scholars have proposed alternative ways to extend the causal estimate to dif-
ferent populations. Battistin and Rettore (2008) establish conditions for interpreting
𝜏RD as the average treatment effect on the treated, utilizing one-sided noncompliance
in a fuzzy RD. Dong and Lewbel (2015) show how to identify the derivative of the treat-
ment effect at the cutoff under a local policy invariance assumption. Bertanha (2020)
identifies average treatment effects computed over general counterfactual distributions
of individuals, rather than over those units in a neighborhood of the cutoff. In fuzzy
RDs, Bertanha and Imbens (2020) propose a testing procedure to extrapolate the av-
erage treatment effect for compliers to other subpopulations (at the cutoff). Finally,
Cattaneo et al. (2021) use the presence of multiple cutoffs and a parallel-trend-type
assumption to extrapolate the average treatment effect to values of the score comprised
between (at least) two cutoffs.

In this article, I focus on the methodology proposed in Angrist and Rokkanen (2015)
(henceforth, AR) and introduce the getaway package to implement it. To extrapolate
treatment effects away from the cutoff, AR exploit additional information contained
in explanatory variables other than the score to estimate treatment effects away from
the cutoff. The methodology hinges on a conditional independence assumption (CIA),
which requires mean independence between potential outcomes and the score variable
conditional on a vector of other covariates, together with a common support condition.
Therefore, in contrast to the other procedures described above, AR leverages additional
information from an external set of variables to identify treatment effects for (poten-
tially) any other population, as long as the CIA holds.

AR describe a setting with a single-cutoff RD design. Leveraging existing results
in the RD literature, one can extend such a setting to the case with more than one
cutoff. If no unit is located exactly at each cutoff (“exogenously” determined cutoffs),
all the results in Cattaneo et al. (2021) hold, and a simple normalizing-and-pooling
(NP) estimator—together with a vector of covariates satisfying the CIA—can be used
to extrapolate treatment effects away from the cutoff. If instead a marginally exposed
unit is located exactly at each cutoff (“endogenously” determined cutoffs), the identi-
fication of average causal effects could be troublesome (Fort et al. 2022). In this case,
the probability limit of the standard NP estimator may differ from the desired causal
parameter—for example, the average treatment effect at the cutoff—despite identifi-
cation conditions holding at each single cutoff. The suggested solution is to recover
identification using a “site fixed-effect” estimation strategy. The site fixed-effect esti-
mator can be obtained by augmenting the standard RD regression with fixed effects at
the site level, where a “site” is defined as the group of units facing the same cutoff.

In addition, getaway is equipped with a data-driven algorithm to search for a vector
of covariates that satisfies the CIA. This algorithm was originally proposed to choose
a model for the propensity score in Imbens and Rubin (2015). At each iteration, the
algorithm selects the covariate that makes the CIA condition more likely to be satisfied,
which turns out to be the covariate with the highest 𝑝-value (lowest test statistic) when
testing the CIA implications in the data. Although the proposed algorithm performs



F. Palomba 373

multiple hypothesis tests, I explicitly do not rely on any form of multiple testing adjust-
ment. The reason is that the algorithm aims at being conservative; thus, rejecting the
null more often than the level of the test would simply add some redundant covariates
to the ones selected to satisfy the CIA condition.

Last, the article describes each of the six different commands contained in getaway:
ciasearch applies a data-driven algorithm that selects an adequate set of covariates to
“get away” from the cutoff; ciatest tests the CIA assumption for a given set of covari-
ates; ciares produces graphical visualization of an implication of the CIA; ciacs finds
the common support region and reports histograms for the estimated propensity score;
getaway parametrically estimates treatment effects away from the cutoff; getawayplot
plots the estimated potential outcomes as functions of the score variable.

The rest of the article is organized as follows. Section 2 gives an overview of the
methods implemented in the getaway package. Sections 3–8 describe the syntax of
ciasearch, ciatest, ciacs, ciares, getaway, and getawayplot, respectively. Sec-
tion 9 gives numerical illustrations, and section 9 concludes.

2 Overview of methods
In an RD design, all observed units receive a score. The score (or running variable) is the
dimension along which units are ordered and assigned to the treatment or the control
group. Units with a value of the score above the cutoff are assigned to treatment; those
with score values lower than the cutoff are assigned to the control group.1

To formalize, let 𝑖 ∈ {1, 2, . . . , 𝑛} be an index for the observed units, 𝑌𝑖 be an
outcome variable of interest, 𝐷𝑖 be a dummy variable denoting assignment to treatment,
𝑋𝑖 be the (scalar) running variable, and 𝑐 the cutoff.2 In an RD design, the assignment
to treatment follows a deterministic rule known at least to the researcher; that is,

𝐷𝑖 = {1, if 𝑋𝑖 ≥ 𝑐
0, if 𝑋𝑖 < 𝑐

If there is full compliance with the treatment, which means that assignment to
treatment and actual treatment status are identical, the RD design is said to be sharp.
If this is not the case, then the RD design with imperfect compliance is called fuzzy.3

1. For simplicity, I assume that assignment to treatment is a nondecreasing function of the score. Of
course, the opposite holds if units with low values are assigned to treatment.

2. The reader interested in the case of multiple running variables should refer to Keele and Titiunik
(2015), Cattaneo, Idrobo, and Titiunik (2024), and references therein.

3. For brevity, in this work I describe only the sharp case, but all the arguments presented here hold
also for the fuzzy case with appropriate modifications.
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2.1 Treatment effect at the cutoff

The key feature of the RD design is that the probability of being assigned to the treat-
ment conditional on the score changes discontinuously at the cutoff. Indeed, the RD
design exploits this source of exogenous variation to identify an average treatment ef-
fect locally at the cutoff. Drawing on the potential outcome framework (Rubin 1974),
I define 𝑌𝑖(0) and 𝑌𝑖(1) as the potential outcomes that would be observed if 𝐷𝑖 = 0 or
𝐷𝑖 = 1, respectively. Hence, we can define the observed outcome as

𝑌𝑖 = 𝑌𝑖(1)𝐷𝑖 + 𝑌𝑖(0)(1 − 𝐷𝑖)

and the local average treatment effect as

𝜏RD ∶= 𝔼 {𝑌𝑖(1) − 𝑌𝑖(0) ∣ 𝑋𝑖 = 𝑐} (1)

From (1), it follows that to identify 𝜏RD, a researcher would have to compare treat-
ment and control units when 𝑋𝑖 = 𝑐. However, the RD design constitutes an extreme
case of lack of common support, because units belonging to the treatment group have
different score values from units in the control group. To solve this problem, Hahn,
Todd, and van der Klaauw (2001) propose to compare units lying immediately to the
right and to the left of the cutoff. Heuristically, units close to the cutoff should be
similar to each other. Formally, the authors show that 𝜏RD is identified as long as the
following two assumptions hold:

1. The probability of receiving the treatment jumps at the cutoff 𝑐; that is,

lim
𝑥 ↓ 𝑐

Pr(𝐷𝑖 = 1 ∣ 𝑋𝑖 = 𝑥) ≠ lim
𝑥 ↑ 𝑐

Pr(𝐷𝑖 = 1 ∣ 𝑋𝑖 = 𝑥)

2. Potential outcomes are continuous at the cutoff; that is,

lim
𝑥 → 𝑐

𝔼 {𝑌𝑖(0) ∣ 𝑋𝑖 = 𝑥} , lim
𝑥 → 𝑐

𝔼 {𝑌𝑖(1) ∣ 𝑋𝑖 = 𝑥}

are continuous in 𝑋𝑖 at 𝑐.

In particular, the local average treatment effect is identified as

𝜏RD = 𝔼 {𝑌𝑖(1) − 𝑌𝑖(0) ∣ 𝑋𝑖 = 𝑐} = lim
𝑥 ↓ 𝑐

𝔼 (𝑌𝑖 ∣ 𝑋𝑖 = 𝑥) − lim
𝑥 ↑ 𝑐

𝔼 (𝑌𝑖 ∣ 𝑋𝑖 = 𝑥)

In practice, estimation of 𝜏RD requires choosing an appropriate bandwidth for the
running variable. A bandwidth is a segment of width ℎ in the support of the running
variable that defines the units used for estimation, that is, those units such that 𝑋𝑖 ∈
[𝑐 − ℎ, 𝑐 + ℎ]. Choosing the bandwidth ℎ entails a bias-variance tradeoff. Indeed,
choosing a wider bandwidth (large ℎ) uses more units to estimate 𝜏RD (lower variance)
but includes units that are far from the cutoff and may differ sensibly in terms of
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observable and unobservable characteristics (higher bias). The opposite holds for a
smaller bandwidth.4

Thus, despite having strong internal validity, standard RD designs may lack external
validity. By construction, the causal parameter 𝜏RD is local, because it measures the
average treatment effect for units having 𝑋𝑖 = 𝑐. Without imposing additional assump-
tions or exploiting further information, nothing can be said about units with different
values of the running variable.

2.2 Treatment effect away from the cutoff

The RD estimator can be thought of as a special case of selection on observables (Heck-
man, LaLonde, and Smith 1999). Indeed, in RD designs omitted variable bias can stem
only from the running variable 𝑋𝑖 (Goldberger 2008). Large differences in the score
of two units are likely to reflect discrepancies in terms of observables and unobserv-
ables. Ultimately, this is why i) RD designs rely only on units close to the cutoff to
estimate 𝜏RD; ii) comparing units away from the cutoff is liable to selection bias; and
iii) identification and estimation become harder when the target is a causal parameter
of a population broader than the one composed of units at the cutoff.

2.2.1 Identification

AR build on the intuition developed in Goldberger (2008) and propose to identify and
estimate treatment effects away from the cutoff relying on a set of predictors of the
dependent variable other than the running variable. Using notation from Lee (2008),
the authors model the running variable 𝑋𝑖 as a measurable function 𝑔(., .) of some
observed (w𝑖) and unobserved (u𝑖) covariates; that is, 𝑋𝑖 = 𝑔(w𝑖, u𝑖). In this model,
conditional on w𝑖, the only randomness in 𝑋𝑖, hence in 𝐷𝑖, comes through u𝑖. If the
observable predictors w𝑖 make the running variable ignorable—that is, independent
of potential outcomes—then one can use them to move away from the cutoff. Such a
condition is termed the CIA, and it holds if and only if

𝔼 {𝑌𝑖(𝑗) ∣ 𝑋𝑖, w𝑖} = 𝔼 {𝑌𝑖(𝑗) ∣ w𝑖}, 𝑗 = 0, 1 (2)

and
0 < Pr(𝐷𝑖 = 1 ∣ w𝑖) < 1, a.s. (3)

In words, condition (2) requires potential outcomes to be independent in mean of
the running variable once the set of covariates w𝑖 is taken into account. Condition (3)
is a matching-style common support assumption that requires the treatment dummy to
be nondegenerate within each cell induced by the vector w𝑖. The CIA breaks the link

4. The reader interested in how to find the optimal bandwidth may want to refer to Imbens and
Kalyanaraman (2012), Calonico, Cattaneo, and Titiunik (2014), Cattaneo, Frandsen, and Titiunik
(2015), or Armstrong and Kolesár (2018). Moreover, in this work I assume for simplicity a sym-
metric bandwidth on each side of the cutoff. Generalizations to different bandwidths on each side
of the cutoff (ℎ𝐿 ≠ ℎ𝑅) are straightforward and are an available option in the getaway package.
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between the running variable and the potential outcomes, so that the vector w𝑖 can
be used in place of the running variable to identify and estimate various causal effects.
This can be done precisely because the only possible source of bias in an RD design is
the running variable. To fix ideas, suppose a researcher is interested in identifying the
treatment effect at 𝑋𝑖 ∈ 𝒜, where 𝒜 is a nonempty set contained in the support of the
running variable. In this case the estimand of interest is 𝜏𝒜 ∶= 𝔼 {𝑌𝑖(1) − 𝑌𝑖(0) ∣ 𝑋𝑖 ∈
𝒜}. If (2) and (3) hold, then 𝜏𝒜 can be estimated as

𝜏𝒜 = 𝔼 {𝔼 (𝑌𝑖 ∣ w𝑖, 𝐷𝑖 = 1) − 𝔼(𝑌𝑖 ∣ w𝑖, 𝐷𝑖 = 0) ∣ 𝑋𝑖 ∈ 𝒜} (4)

Example

If a researcher is interested in the average treatment on the treated (ATT), then
𝒜 = [𝑐, ∞) and

𝜏[𝑐,∞) = 𝔼 {𝔼 (𝑌𝑖 ∣ w𝑖, 𝐷𝑖 = 1) − 𝔼(𝑌𝑖 ∣ w𝑖, 𝐷𝑖 = 0) ∣ 𝑋𝑖 ≥ 𝑐}

If the average treatment on the nontreated (ATNT) is of interest, then 𝒜 = (−∞, 𝑐) and

𝜏(−∞,𝑐) = 𝔼 {𝔼 (𝑌𝑖 ∣ w𝑖, 𝐷𝑖 = 1) − 𝔼(𝑌𝑖 ∣ w𝑖, 𝐷𝑖 = 0) ∣ 𝑋𝑖 < 𝑐}

2.2.2 Estimation

To find an estimator for 𝜏𝒜 in (4), it is sufficient to rely on the plugin principle. The
crucial part regards the estimation of the inner conditional expectation 𝔼(𝑌𝑖 ∣ w𝑖, 𝐷𝑖).
AR propose two main estimators:

1. The conditional expectation 𝔼(𝑌𝑖 ∣ w𝑖, 𝐷𝑖) can be modeled linearly in w𝑖 as

𝔼 (𝑌𝑖 ∣ w𝑖, 𝐷𝑖 = 1) = w′
𝑖𝛽𝑅, 𝔼 (𝑌𝑖 ∣ w𝑖, 𝐷𝑖 = 0) = w′

𝑖𝛽𝐿

Then, substituting it in (4), we get the following linear reweighting estimator
(Kline 2011):

𝔼 {𝑌𝑖(1) − 𝑌𝑖(0) ∣ 𝑋𝑖 ∈ 𝒜} = (𝛽𝑅 − 𝛽𝐿)′𝔼 (w𝑖 ∣ 𝑋𝑖 ∈ 𝒜) (5)

2. A propensity-score weighting estimator in the spirit of Hirano, Imbens, and Ridder
(2003) is

𝔼 {𝑌𝑖(1) − 𝑌𝑖(0) ∣ 𝑋𝑖 ∈ 𝒜} = 𝔼 ( 𝑌𝑖{𝐷𝑖 − 𝑝(𝑋𝑖)}
𝑝(𝑋𝑖){1 − 𝑝(𝑋𝑖)}

× Pr(𝑋𝑖 ∈ 𝒜 ∣ w𝑖)
Pr(𝑋𝑖 ∈ 𝒜)

) (6)

where 𝑝(𝑋𝑖) ∶= Pr(𝐷𝑖 = 1 ∣ 𝑋𝑖) is a probability model for the propensity score.
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2.2.3 Testing

The CIA in (2) has (partially) testable implications because the RD design provides a test
for the assumption that conditioning on the vector of observables w𝑖 removes selection
bias. Indeed, in RD designs the running variable is the only source of omitted variable
bias; hence, if w𝑖 breaks the link between the potential outcomes and the running
variable, there is no omitted variable bias. Thus, testing the CIA boils down to testing
whether 𝑋𝑖 has a statistically significant effect on 𝑌𝑖 conditionally on w𝑖. Formally,
implications of the CIA can be tested empirically by running the following regressions,

𝑌𝑖 = 𝛼𝐿 + 𝑋𝑖𝛾𝐿,1 + ⋯ + 𝑋𝑝
𝑖 𝛾𝐿,𝑝 + w′

𝑖𝛽𝐿 + 𝜀𝑖, if 𝑋𝑖 < 𝑐
𝑌𝑖 = 𝛼𝑅 + 𝑋𝑖𝛾𝑅,1 + ⋯ + 𝑋𝑞

𝑖 𝛾𝑅,𝑞 + w′
𝑖𝛽𝑅 + 𝜈𝑖, if 𝑋𝑖 ≥ 𝑐

and testing the null hypotheses that

𝐻(𝐿)
0 ∶ 𝛾𝐿,1 = ⋯ = 𝛾𝐿,𝑝 = 0 and 𝐻(𝑅)

0 ∶ 𝛾𝑅,1 = ⋯ = 𝛾𝑅,𝑞 = 0

where 𝑝 ∈ ℕ and 𝑞 ∈ ℕ are the degree of the polynomial in the score to the left and
to the right of the cutoff, respectively. If there is not enough evidence to reject these
null hypotheses, then there is no evidence in favor of the CIA not being satisfied by the
vector of covariates w𝑖.

2.3 RD with multiple rankings

In the recent literature, the case of RD with multiple cutoffs has received a lot of attention
(see Cattaneo, Titiunik, and Vazquez-Bare [2020] and references therein). A popular
practice is to normalize all the cutoffs to a common value (zero) and pool together
units belonging to different rankings. This practice defines the NP estimator mentioned
previously.5 Formally, let 𝑋𝑖𝑠 be the running variable for unit 𝑖 in site 𝑠 ∈ {1, 2, . . . , 𝑆}
and 𝑐𝑠 be the cutoff value that determines assignment to treatment in site (ranking)
𝑠. Often, researchers create a normalized version of the score using the formula 𝑋𝑖 =
𝑋𝑖𝑠 − 𝑐𝑠. NP allows researchers to rewrite the assignment-to-treatment function as
𝐷𝑖 = 1(𝑋𝑖 > 0). By doing so, they obtain a single estimate using all available data and
hence increase the statistical power and precision of the estimates. Cattaneo et al. (2021)
outline that the NP estimand is a weighted average of the RD estimates at each cutoff,
where the weights depend on the number of units around each cutoff. This means that
this estimand averages out any source of treatment heterogeneity, so attention should
be paid when interpreting this causal parameter.

An example of this setting is a sequence of calls for tenders conducted in different
areas of a country where local firms are ranked according to their bids. Firms operating
in different regions will not compete against each other, and different cutoff values
may determine their assignment to treatment. This is not problematic if the cutoff is

5. In principle, one can estimate a separate RD at each cutoff. However, in practice it usually happens
that the available sample is limited in size and RDs estimated in this way typically lack statistical
power.
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determined ex ante in each ranking as in the setting described in Cattaneo et al. (2021)
(the so-called “exogenous cutoff”). If instead the cutoff coincides with the marginal
subject exposed to treatment in each ranking (“endogenous cutoff”), the traditional NP
estimator does not estimate any causal parameter of interest.

As pointed out in Fort et al. (2022), in settings where the cutoffs are determined
endogenously, the NP estimator uses inappropriate weights for those observations above
the cutoff. This issue arises because the score variable has a mass point exactly at
the cutoff. Thus, the NP estimator is biased with respect to 𝜏RD, and the size of the
bias depends on the covariance between the potential outcomes of units when treated
and their relative frequency, in a neighborhood of the cutoff. This bias goes away
asymptotically, as the number of units in each ranking goes to infinity, which is unlikely
the case in most applications. The safest solution to this problem is introducing fixed-
effect dummies at the site level. In this spirit, the getaway package extends the work
done in AR to the multiple cutoff case, introducing the possibility to add site-level fixed
effects to the RD estimator.

2.4 Data-driven algorithm

The package relies on a data-driven algorithm in the spirit of Imbens and Rubin (2015,
chap. 13.3) that searches for a vector of covariates satisfying the CIA condition. Formally,
suppose there is a set of 𝑘 covariates 𝒞, which is the union of two disjoint sets:

• a set 𝒞1 ⊂ 𝒞 containing 𝑘1 < 𝑘 covariates to be included in w𝑖 independently
of their relationship with the outcome variable. These are covariates that the
researcher views as a priori important in explaining the selection bias between
units with high and low values of the score. In principle, in the absence of a
relevant theory driving the choice of these covariates or simply if the researcher
has little substantive knowledge, it could be that 𝒞1 = ∅.

• a set 𝒞2 ⊆ 𝒞 containing 𝑘2 ≤ 𝑘 candidate covariates that could be included in w𝑖
with the purpose of making the running variable ignorable.

Example

Suppose that 𝑋𝑖 is a score denoting the quality of a project of a firm, 𝑌𝑖 is em-
ployment growth, and the natural experiment takes place in Italy. Previous theoretical
and empirical work suggests that employment growth is inversely related to a firm’s
age (Jovanovic 1982). In addition, the Italian context is characterized by a prevalence
of very small firms (Bartelsman, Scarpetta, and Schivardi 2005); thus, the presence of
managers and white collar workers may be an important source of competitive advan-
tage. Therefore, a researcher might want to include firm size, firm age, presence of
manager in the firm, and presence of white collar workers in the firm in 𝒞1.
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The algorithm searches for sets 𝒞𝐿, 𝒞𝑅 ⊆ 𝒞2 such that 𝒞𝐿 ∪ 𝒞1 and 𝒞𝑅 ∪ 𝒞1 make
the running variable ignorable to the left and to the right of the cutoff, respectively.
The algorithm is composed of the following steps:

1. Let 𝜄 be the number of covariates in 𝒞2 that have already been selected.6 Run the
following set of regressions for 𝑗 = 1, . . . , 𝑘2 − 𝜄,

𝑌𝑖𝑠 =
𝑝

∑
ℓ=1

𝑋ℓ
𝑖𝑠𝛾𝐿,ℓ + z′

𝐿,𝑖𝑠𝛿𝐿 + 𝜔(𝑗)
𝑖𝑠 𝜇𝐿,𝑗 + 𝛼𝐿,𝑠 + 𝜀𝑖𝑠, if 𝑋𝑖𝑠 < 𝑐𝑠

𝑌𝑖𝑠 =
𝑞

∑
ℓ=1

𝑋ℓ
𝑖𝑠𝛾𝑅,ℓ + z′

𝑅,𝑖𝑠𝛿𝑅 + 𝜔(𝑗)
𝑖𝑠 𝜇𝑅,𝑗 + 𝛼𝑅,𝑠 + 𝜈𝑖𝑠, if 𝑋𝑖𝑠 ≥ 𝑐𝑠 (7)

where z•,𝑖𝑠 is the vector of 𝑘1 + 𝜄 covariates that have already been included, ℎ
is the bandwidth, 𝛼•,𝑠 are fixed effects at the site level (Fort et al. 2022), and
𝜔(𝑗)

𝑖𝑠 ∈ 𝒞2 is the 𝑗th candidate covariate.7 Notice that the RD design with a single
cutoff or with multiple exogenous cutoffs is a particular specification of (7), in
which the site fixed effects 𝛼•,𝑠 become a pooled constant 𝛼•.

2. For each regression in (7), conduct an 𝐹 test for the null hypothesis that the CIA
holds (separately) on each side of the cutoff,

𝐻(𝐿)
0 ∶ 𝛾𝐿,1 = ⋯ = 𝛾𝐿,𝑝 = 0 and 𝐻(𝑅)

0 ∶ 𝛾𝑅,1 = ⋯ = 𝛾𝑅,𝑞 = 0

and store the two 𝐹 statistics 𝐹 𝑗,𝐿 and 𝐹 𝑗,𝑅.

3. Select the two covariates associated with each smallest 𝐹 statistic in the two sets

ℱ𝐿 = {𝐹 1,𝐿, 𝐹 2,𝐿, . . . , 𝐹 𝑘2−𝜄,𝐿}, ℱ𝑅 = {𝐹 1,𝑅, 𝐹 2,𝑅, . . . , 𝐹 𝑘2−𝜄,𝑅}

Denote these two variables with 𝜔⋆
𝐿,𝑖𝑠 and 𝜔⋆

𝑅,𝑖𝑠, respectively. Notice that nothing
prevents the variable with the smallest 𝐹 statistic on the left of the cutoff to differ
from one on the right of the cutoff; that is, it can be that 𝜔⋆

𝐿,𝑖𝑠 ≠ 𝜔⋆
𝑅,𝑖𝑠.

4. Add 𝜔⋆
𝐿,𝑖𝑠 and 𝜔⋆

𝑅,𝑖𝑠 to 𝒞𝐿 and 𝒞𝑅, respectively, and to z•,𝑖𝑠 in (7).

5. Repeat steps 1–4 until one of the following stopping criteria is reached:

• The null hypothesis that the running variable is not significantly different
from 0 cannot be rejected at the 𝛼% level, where 𝛼 is chosen by the researcher;

• all the covariates in ̃𝒞 have been included in 𝒞𝐿 and 𝒞𝑅.

6. Alternatively, 𝜄 can be thought of as the iteration of the algorithm minus one.
7. When the algorithm starts (𝜄 = 0), we run the regression of 𝑌𝑖𝑠 onto the covariates in 𝒞1, a

polynomial in the running variable, and (if present) the site fixed effects, and we add one single
candidate covariate.
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The basic idea behind the algorithm is to implement a greedy approach (James et al.
2023), meaning that the best variable is selected at each particular step, rather than
looking ahead and picking a variable that will lead to a larger reduction in the loss
function in some future step. This is done to avoid testing all the possible combinations
of the elements of 𝒞2.8

Three caveats are needed. First, as already outlined, it can happen that the algo-
rithm selects two different sets of covariates on each side of the cutoff. The proposed
heuristic here is to define the final set of covariates as the union between the sets of
covariates satisfying the CIA on each side of the cutoff.

Second, in some cases the heuristic approach above might not work. Indeed, while
not being a problem in population, in the sample it could be that the union of two
nonidentical sets of covariates satisfying the CIA on separate sides of the cutoff does
not satisfy the CIA simultaneously on both sides. Thus, a more stringent version of the
algorithm can be implemented. This alternative algorithm has a different step 3, in
which it selects a unique covariate �̃�𝑖 that minimizes a single loss function of the form
ℒ(ℱ𝑗,𝐿, ℱ𝑗,𝑅), rather than minimizing ℒ(ℱ𝐿) and ℒ(ℱ𝑅) separately. When required
to choose a single covariate at each step, the package getaway uses ℒ(ℱ𝑗,𝐿, ℱ𝑗,𝑅) =
min{ℱ𝑗,𝐿, ℱ𝑗,𝑅}. On the one hand, this feature makes the algorithm more demanding,
because it selects a set of covariates that satisfies the CIA condition on both sides of the
cutoff at the same time. On the other hand, this version has the advantage of not relying
on the heuristic solution of using the union of the two selected groups of covariates.

Third, an obvious but well-due remark. If the algorithm above does not yield a set of
covariates that satisfies the CIA, then there are two solutions: the researcher either gives
up extrapolation away from the cutoff or gathers more information (that is, variables).
A similar remark applies when the common support condition (3) is not satisfied.

3 The ciasearch command
This section describes the syntax of the command ciasearch, which implements the
algorithm described in section 2.4, which searches for a vector of covariates w satisfying
the CIA condition (2). The common support condition (3) can be verified using the
command ciacs (see section 6) once a candidate w has been found with ciasearch.

8. This exercise would soon become intractable from a computational point of view because it involves
estimating ∑𝑘2

𝑖=1 (𝑘2
𝑖 ) different regressions. To quantify this issue, with 10 covariates, the number

of different combinations to be tested for is 1,023. This case is still tractable. However, adding just
10 other covariates drives the number of combinations to over 1 million.
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3.1 Syntax

ciasearch varlist [ if ] [ in ], outcome(varname) score(varname) bandwidth(#)

[ cutoff(#) included(varlist) poly(numlist) robust vce(varname)

site(varname) alpha(#) quad unique force noprint ]

where varlist specifies the set of candidates 𝒞2 and the option included() eventually
specifies the set of always-included covariates 𝒞1.

3.2 Options

outcome(varname) specifies the dependent variable of interest. outcome() is required.

score(varname) specifies the running variable. score() is required.

bandwidth(#) specifies the value for the bandwidth to be used for estimation. The
user can specify a different bandwidth for each side. bandwidth() is required.

cutoff(#) specifies the value of the cutoff. The default is cutoff(0). The cutoff value
is subtracted from the score() variable and the bandwidth. When multiple cutoffs
are present, provide the pooled cutoff.

included(varlist) specifies the set of covariates that are always included in the testing
regression.

poly(numlist) specifies the degree of the polynomial function in the running variable.
The user can specify a different degree for each side. The default is poly(1 1).

robust estimates heteroskedasticity-robust standard errors.

vce(varname) specifies the clustered standard errors at the specified level.

site(varname) specifies the variable identifying the site to add site fixed effects.

alpha(#) specifies the level of type I error in the CIA test. The default is alpha(0.1).
In this case, the higher the value of alpha(), the easier it will be to reject the null
hypothesis that the CIA condition holds. Notice that alpha() implicitly defines the
threshold value for algorithm convergence.

quad adds to varlist squared terms of each (nondichotomic) covariate in varlist and
interactions of all the covariates in varlist

unique runs a single algorithm on both sides. This version selects a unique set of
covariates that satisfies the CIA condition on both sides of the cutoff at the same
time.

force causes the algorithm to forget the value of the loss function at the iteration 𝑗 − 1
and select the covariate providing the lower value of the loss function at iteration 𝑗.
In other words, with this option, the algorithm searches for the covariate that min-
imizes the loss function within a certain iteration. This can make the loss function
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nonstrictly decreasing in the number of iterations but allows the algorithm to select
covariates that provide a sensible gain only after some steps.

noprint suppresses within-iteration results.

4 The ciatest command
This section describes the syntax of the ciatest command, which tests whether the CIA
condition (2) holds for a given input vector of covariates w𝑖. The command ciatest is
the “manual” version of ciasearch.

4.1 Syntax

ciatest varlist [ if ] [ in ], outcome(varname) score(varname) bandwidth(#)

[ cutoff(#) poly(numlist) robust vce(varname) site(varname) alpha(#)

details noise ]

where varlist specifies the vector w𝑖.

4.2 Options

outcome(varname) specifies the dependent variable of interest. outcome() is required.

score(varname) specifies the running variable. score() is required.

bandwidth(#) specifies the value for the bandwidth to be used for estimation. The
user can specify a different bandwidth for each side. bandwidth() is required.

cutoff(#) specifies the value of the cutoff. The default is cutoff(0). The cutoff value
is subtracted from the score() variable and the bandwidth. When multiple cutoffs
are present, provide the pooled cutoff.

poly(numlist) specifies the degree of the polynomial function in the running variable.
The user can specify a different degree for each side. The default is poly(1 1).

robust specifies the estimated heteroskedasticity-robust standard errors.

vce(varname) specifies the clustered standard errors at the specified level.

site(varname) specifies the variable identifying the site to add site fixed effects.

alpha(#) specifies the level of type I error in the CIA test. The default is alpha(0.1).
In this case, the higher the value of alpha(), the easier it will be to reject the null
hypothesis that the CIA condition holds. Notice that alpha() implicitly defines the
threshold value for algorithm convergence.
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details reports results of additional tests in the output. The details option reports
the main statistics of the simple regression of outcome() on score() in both the
restricted sample and full sample. The restricted sample is the sample composed
by all units with no missing values in outcome(), score(), and varlist, while the
full sample is defined as those units with no missing entries only in outcome() and
score(). This additional check is particularly useful when there are missing values
in varlist.

noise prints all testing regression outputs.

5 The ciares command
This section describes the syntax of the ciares command, which provides a graphical
visualization of the CIA condition (2) for a given input vector of covariates w𝑖.

5.1 Syntax

ciares varlist [ if ] [ in ], outcome(varname) score(varname) bandwidth(#)

[ cutoff(#) nbins(numlist) site(varname) cmpr(numlist)
gphoptions(string) scatterplotopt(string) scatter2plotopt(string)

lineLplotopt(string) lineRplotopt(string) lineL2plotopt(string)

lineR2plotopt(string) legendopt(string) ]

where varlist specifies the vector w𝑖.

5.2 Options

outcome(varname) specifies the dependent variable of interest. outcome() is required.

score(varname) specifies the running variable. score() is required.

bandwidth(#) specifies the value for the bandwidth to be used for estimation. The
user can specify a different bandwidth for each side. bandwidth() is required.

cutoff(#) specifies the value of the cutoff. The default is cutoff(0). The cutoff value
is subtracted from the score() variable and the bandwidth. When multiple cutoffs
are present, provide the pooled cutoff.

nbins(numlist) specifies the number of bins in which the average of residuals should
be computed. The number of bins can be specified for each side of the cutoff. The
default is nbins(10 10).

site(varname) specifies the variable identifying the site to add site fixed effects.
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cmpr(numlist) adds the conditional regression function of outcome() on the score().
The form of polynomials on the left and on the right can be modeled independently—
for example, cmpr(2 3) for a second-order polynomial on the left and a third-order
one on the right.

gphoptions(string) specifies graphical options to be passed on to the underlying graph
command. These options overwrite the default formatting options of the command.

scatterplotopt(string) specifies graphical options to be passed on to the underlying
scatterplot.

scatter2plotopt(string) specifies graphical options to be passed on to the underlying
scatterplot (secondary axis).

lineLplotopt(string) specifies graphical options to be passed on to the underlying line
plot (left of cutoff).

lineRplotopt(string) specifies graphical options to be passed on to the underlying line
plot (right of cutoff).

lineL2plotopt(string) specifies graphical options to be passed on to the underlying
line plot (left of cutoff, secondary axis).

lineR2plotopt(string) specifies graphical options to be passed on to the underlying
line plot (right of cutoff, secondary axis).

legendopt(string) specifies graphical options to be passed on to the underlying plot
legend.

6 The ciacs command
This section describes the syntax of the command ciacs, which provides a graphical
visualization of the common support condition (3) required to validate the CIA. The
command ciacs allows the user to fit a logistic or probit model for the treatment variable
𝐷𝑖 using w𝑖 (and fixed effects if required) as explanatory variables. Furthermore, ciacs
allows to graphically visualize whether the common support assumption holds.

6.1 Syntax

ciacs varlist [ if ] [ in ], outcome(varname) assign(varname) score(varname)

bandwidth(#) [ cutoff(#) nbins(numlist) site(varname) asis

gphoptions(string) pscore(string) probit kdensity nograph

legendopt(string) barTopt(string) barCopt(string) lineTopt(string)

lineCopt(string) ]

where varlist specifies the vector w𝑖.
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6.2 Options

outcome(varname) specifies the dependent variable of interest. This option is used just
to mark the sample on which the 𝑝 score is estimated. outcome() is required.

assign(varname) sets the assignment to treatment variable. assign() is required.

score(varname) specifies the running variable. score() is required.

bandwidth(#) specifies the value for the bandwidth to be used for estimation. The
user can specify a different bandwidth for each side. bandwidth() is required.

cutoff(#) specifies the value of the cutoff. The default is cutoff(0). The cutoff value
is subtracted from the score() variable and the bandwidth. When multiple cutoffs
are present, provide the pooled cutoff.

nbins(numlist) specifies the number of bins in which the average of residuals should
be computed. The number of bins can be specified for each side of the cutoff. The
default is nbins(10 10).

site(varname) specifies the variable identifying the site to add site fixed effects.

asis forces retention of perfect predictor variables and their associated perfectly pre-
dicted observations.

gphoptions(string) specifies graphical options to be passed on to the underlying graph
command. These options overwrite the default formatting options of the command.

pscore(string) specifies the name of the variable containing the 𝑝 score rather than the
default logit model. This variable is added to the current dataset.

probit implements a probit model to estimate the 𝑝 score.

kdensity displays kernel densities rather than histograms, which is the default.

nograph suppresses any graphical output.

legendopt(string) specifies graphical options to be passed on to the underlying plot
legend.

barTopt(string) specifies graphical options to be passed on to the underlying bar chart
for the treated units.

barCopt(string) specifies graphical options to be passed on to the underlying bar chart
for the control units.

lineTopt(string) specifies graphical options to be passed on to the underlying density
line for the treated units.

lineCopt(string) specifies graphical options to be passed on to the underlying density
line for the control units.
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7 The getaway command
This section describes the syntax of the getaway command, which allows the user to
estimate and plot treatment effects away from the cutoff. The command implements
either the linear reweighting estimator (5) or the propensity-score reweighting estimator
(6). By default, it estimates ATT and ATNT, but it also allows for estimation of other
causal parameters of interest on finer intervals of the running variable. Indeed, the
command allows to partition the support of the running variable in quantile-spaced
bins and to estimate treatment effects within these bins. Obtaining these estimates
following (5) is straightforward.

7.1 Syntax

getaway varlist [ if ] [ in ], outcome(varname) score(varname) bandwidth(#)

[ cutoff(#) method(string) site(varname) nquant(numlist) probit

trimming(numlist) bootrep(#) clevel(#) reghd qtleplot genvar(string)

asis gphoptions(string) qtleplotopt(string) qtleciplotopt(string)

attplotopt(string) attciplotopt(string) atntplotopt(string)

atntciplotopt(string) ]

where varlist specifies the vector w𝑖.

7.2 Options

outcome(varname) specifies the dependent variable of interest. outcome() is required.

score(varname) specifies the running variable. score() is required.

bandwidth(#) specifies the value for the bandwidth to be used for estimation. The
user can specify a different bandwidth for each side. bandwidth() is required.

cutoff(#) specifies the value of the cutoff. The default is cutoff(0). The cutoff value
is subtracted from the score() variable and the bandwidth. When multiple cutoffs
are present, provide the pooled cutoff.

method(string) allows to choose the estimation method between the linear reweighting
estimator (linear) and propensity-score weighting estimator (pscore). The default
is method(linear).

site(varname) specifies the variable identifying the site to add site fixed effects.

nquant(numlist) specifies the number of quantiles in which the treatment effect must be
estimated. It can be specified separately for each side. The default is nquant(0 0).
It should be specified if qtleplot is used.
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probit uses a probit model to estimate the 𝑝 score rather than the default logit model.
It is effective only if method("pscore") is used.

trimming(numlist) specifies a lower and an upper bound for the 𝑝 score. Units with a
𝑝 score outside such intervals are trimmed and not used in estimation and inference.
It is effective only if method("pscore") is used, and in such a case, the default is
trimming(0.1 0.9), according to Crump et al. (2009).

bootrep(#) sets the number of replications of the nonparametric bootstrap. The de-
fault is bootrep(0). If site() is specified, a nonparametric block bootstrap is used.

clevel(#) specifies the confidence level for the confidence intervals reported in the
plot. The default is clevel(95).

reghd allows site fixed effects to differ on each side of the cutoff. If the number of
observations per ranking is not sufficiently high, it might yield inconsistent estimates
for the treatment effects away from the cutoff. It relies on the reghdfe command
(Correia 2014).

qtleplot plots estimated treatment effects over running variable quantiles together with
bootstrapped standard errors. It also estimates and reports bootstrapped standard
errors of the ATT and ATNT.

genvar(string) specifies the name of the variable containing the distribution of treat-
ment effects. It is used only with method(linear).

asis forces retention of perfect predictor variables and their associated perfectly pre-
dicted observations in 𝑝-score estimation. It is to be used only with method(pscore).

gphoptions(string) specifies graphical options to be passed on to the underlying graph
command.

qtleplotopt(string) specifies graphical options to be passed on to the underlying scat-
terplot.

qtleciplotopt(string) specifies graphical options to be passed on to the underlying
spike plot for the confidence intervals for the treatment effect at each quantile of the
running variable.

attplotopt(string) specifies graphical options to be passed on to the underlying line
plot for the average treatment effect on the treated.

attciplotopt(string) specifies graphical options to be passed on to the underlying line
plot for the confidence interval of the average treatment effect on the treated.

atntplotopt(string) specifies graphical options to be passed on to the underlying line
plot for the average treatment effect on the nontreated.

atntciplotopt(string) specifies graphical options to be passed on to the underlying
line plot for the confidence interval of the average treatment effect on the nontreated.
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8 The getawayplot command
This section explains the syntax of the getawayplot command, which plots nonparamet-
ric estimates of the actual and counterfactual regression functions using kernel-weighted
local polynomial smoothers.

8.1 Syntax

getawayplot varlist [ if ] [ in ], outcome(varname) score(varname)

bandwidth(#) [ cutoff(#) kernel(string) site(varname) degree(#)

nbins(numlist) clevel(#) nostderr gphoptions(string)

scatterplotopt(string) areaplotopt(string) lineplotopt(string)

lineCFplotopt(string) legendopt(string) ]

where varlist specifies the vector w𝑖.

8.2 Options

outcome(varname) specifies the dependent variable of interest. outcome() is required.

score(varname) specifies the running variable. score() is required.

bandwidth(#) specifies the value for the bandwidth to be used for estimation. The
user can specify a different bandwidth for each side. bandwidth() is required.

cutoff(#) specifies the value of the cutoff. The default is cutoff(0). The cutoff value
is subtracted from the score() variable and the bandwidth. When multiple cutoffs
are present, provide the pooled cutoff.

kernel(string) specifies the kernel function. The default is kernel(epanechnikov).
To see the full list of available kernel functions, see [R] lpoly.

site(varname) specifies the variable identifying the site to add site fixed effects.

degree(#) specifies the degree of the local polynomial smooth. The default is
degree(0).

nbins(numlist) specifies the number of bins for which the counterfactual average is
shown in the final graph. The default is nbins(10 10).

clevel(#) specifies the confidence level for the confidence bands reported in the plot.
The default is clevel(95).

nostderr specifies that standard errors not be computed and plotted.

gphoptions(string) specifies graphical options to be passed on to the underlying graph
command.
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scatterplotopt(string) specifies graphical options to be passed on to the underlying
scatterplot.

areaplotopt(string) specifies graphical options to be passed on to the underlying con-
fidence bands plot.

lineplotopt(string) specifies graphical options to be passed on to the underlying line
plot for observed potential outcomes.

lineCFplotopt(string) specifies graphical options to be passed on to the underlying
line plot for counterfactual potential outcomes.

legendopt(string) specifies graphical options to be passed on to the underlying plot
legend.

9 Illustration of methods
This section illustrates the main features of the getaway package using a simulated
dataset, simulated_getaway.dta. The dataset contains 𝑛 = 2000 observations, which
are divided in 𝑆 = 5 different groups (sites) of equal size. In this dataset, Y is the
outcome variable, T is the treatment dummy, X is the standardized running variable,
cutoff is a variable containing the corresponding cutoff for each unit, site is a variable
containing the site identifier for each unit, and w1–w10 are 10 covariates (henceforth,
𝜔𝑖, 𝑖 = 1, . . . , 10) to be used to validate the CIA assumption. In each site, the cutoff is
defined endogenously as 𝑐𝑠 = median(𝑋𝑖𝑠).

. use simulated_getaway

. summarize Y T X cutoff
Variable Obs Mean Std. dev. Min Max

Y 2,000 100.5602 54.3153 -15.2992 309.6667
T 2,000 .5 .500125 0 1
X 2,000 .0463897 2.058906 -6.855689 6.944369

cutoff 2,000 .9372802 .0830187 .81286 1.039276
. tabulate cutoff
Site Cutoff Freq. Percent Cum.

.81286 400 20.00 20.00
.8890854 400 20.00 40.00
.9293263 400 20.00 60.00
1.015854 400 20.00 80.00
1.039276 400 20.00 100.00

Total 2,000 100.00
. twoway (scatter Y X if site == 1, msymbol(o))
> (scatter Y X if site == 2, msymbol(o))
> (scatter Y X if site == 3, msymbol(o))
> (scatter Y X if site == 4, msymbol(o))
> (scatter Y X if site == 5, msymbol(o)),
> xline(0) ylabel(,nogrid)
> xtitle("Score") ytitle("Outcome") xlabel(-6(3)6) legend(off)
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Each covariate is generated according to 𝜔𝑖
i.i.d.∼ 𝑁(𝜇𝑖, 1), where each 𝜇𝑖 has been

extracted from a 𝑈(−1, 1). The running variable is created as

𝑋𝑖𝑠 = 𝜔1,𝑖𝑠𝜙1 + 𝜔2,𝑖𝑠𝜙2 + 𝜈𝑖𝑠, 𝜈𝑖𝑠
i.i.d.∼ 𝑁(0, 1), 𝑗 = 1, 2

where 𝜙1, 𝜙2 are extracted from a 𝑈(1, 2). Let 𝜔𝑖𝑠 ∶= (𝜔1,𝑖𝑠, 𝜔2,𝑖𝑠)′. The outcome vari-
able is simulated according to the following data-generating process,

𝑌𝑖𝑠 = 𝛼𝑠 + 𝑇𝑖𝑠𝛽 + 𝜔′
𝑖𝑠𝛾 + 𝜔′

𝑖𝑠𝜔𝑖𝑠𝛿 + 𝑇𝑖𝑠𝜔′
𝑖𝑠𝜆 + 𝑇𝑖𝑠𝜔′

𝑖𝑠𝜔𝑖𝑠𝜌 + 𝜀𝑖𝑠

where 𝜀𝑖𝑠
i.i.d.∼ 𝑁(0, 10), 𝛽 = 50, 𝛾 = (5, 5)′, 𝛿 = 0.5, 𝜆 = (1, 1)′, 𝜌 = 2. Finally, the

fixed effect is 𝛼𝑠 = 20𝑠, 𝑠 = 1, . . . , 5. Figure 1(a) shows the (averaged across groups)
potential outcomes as a function of the running variable. The figure shows that the
data-generating process features heterogeneous treatment effects with respect to the
score (gray dash-dotted line). Figure 1(b) plots the observed outcome variable for each
site.
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Figure 1. Simulation results

The data-generating process considered in this example implies that

w𝑖𝑠 ∶= (𝜔1,𝑖𝑠, 𝜔2,𝑖𝑠, 𝜔2
1,𝑖𝑠, 𝜔2

2,𝑖𝑠, 𝜔1,𝑖𝑠, 𝜔2,𝑖𝑠)

is the vector of covariates that satisfies the CIA condition (2).

The command ciasearch allows to search among the 10 “candidate” covariates
w1–w10 the ones (if any) satisfying the CIA. The command, through the option quad,
also tests interactions and quadratic terms among the candidate covariates. The basic
syntax is illustrated in the following snippet.9

9. In this case, I choose the bandwidth to be ℎ = 7 just to include the whole sample.
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. ciasearch w1 w2 w3 w4 w5 w6 w7 w8 w9 w10, outcome(Y) score(X) bandwidth(7)
> cutoff(0) site(site) quad noprint poly(2) alpha(0.5)

Algorithm Path:
Searching for a set of covariates validating the CIA on the left of the cutoff

> ...
Iteration #1 finished || Loss Function (>.5): 0.000 || Selected w2
Iteration #2 finished || Loss Function (>.5): 0.211 || Selected w1
Iteration #3 finished || Loss Function (>.5): 0.718 || Selected w2_sq
Searching for a set of covariates validating the CIA on the right of the cutoff

> ...
Iteration #1 finished || Loss Function (>.5): 0.000 || Selected w2_sq
Iteration #2 finished || Loss Function (>.5): 0.000 || Selected w2Xw1
Iteration #3 finished || Loss Function (>.5): 0.051 || Selected w1
Iteration #4 finished || Loss Function (>.5): 0.127 || Selected w2
Iteration #5 finished || Loss Function (>.5): 0.840 || Selected w1_sq

Results
Algorithm Converged - Selected Covariates on the Left: w2 w1 w2_sq
Algorithm Converged - Selected Covariates on the Right: w2_sq w2Xw1 w1 w2 w1_sq

By default, the algorithm searches for a set of covariates satisfying the CIA separately
on each side of the cutoff. The command displays the result of each iteration, reporting
the loss function value (in this case, minus the 𝑝-value of the test described in step 2
of the algorithm in section 3) and the selected covariate, that is, the one minimizing
the loss function. In the particular case reported in the snippet, two different sets of
covariates are selected on the two sides.10 For circumstances like this one, the suggested
rule of thumb is to test whether the CIA holds on both sides using the union of the two
sets and eventually proceed further with the analysis using this joint set. The results
of such a test are presented in the next snippet.

. generate w1sq = w1^2

. generate w2sq = w2^2

. generate w2Xw1 = w2*w1

. ciatest w1 w2 w1sq w2sq w2Xw1, outcome(Y) score(X) bandwidth(7) cutoff(0)
> poly(2) site(site) alpha(0.5)

CIA Test Results
LEFT RIGHT

Coef_1 -.50775874 -.15850905
Coef_2 -.1296132 -.01281982
F-stat .22724811 .1741112

p-value .79676472 .84022923
N 1000 1000

CIA condition satisfied! (alpha = .5)

The output above shows the main statistics obtained from running a regression
similar to (7) on each side of the cutoff and testing the CIA. The left column reports the
results obtained to the left, and the right column the results to the right. The option
10. The chosen set of covariates on the left is a subvector of w𝑖𝑠. This is because the algorithm selects

the first vector that satisfies the stopping rule, which is reaching a 𝑝-value of at least 0.5 (with the
alpha(0.5) option).
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poly(2) fits a polynomial of second order in the running variable, and the first two rows
display the regression coefficients corresponding to 𝑋𝑖𝑠 and 𝑋2

𝑖𝑠. The third and fourth
row summarize the hypothesis tests by showing the 𝐹 statistic and the corresponding
𝑝-value. The last row reports the number of observations used.

Graphical evidence can support the statistical evidence obtained with ciatest. The
ciares command allows the user to test graphically an implication of the CIA, according
to the following procedure:

• Run the regressions of the outcome variable on the vector of covariates w𝑖𝑠 to the
left and to the right of the cutoff; that is,

𝑌𝑖𝑠 = 𝛼𝐿,𝑠 + w′
𝑖𝑠𝜙𝐿 + 𝜀𝑖𝑠, if −𝑋𝑖𝑠 < 𝑐𝑠

𝑌𝑖𝑠 = 𝛼𝑅,𝑠 + w′
𝑖𝑠𝜙𝑅 + 𝜈𝑖𝑠, if 𝑋𝑖𝑠 ≥ 𝑐𝑠

where 𝛼𝑗,𝑠, 𝑗 = 𝐿, 𝑅 are site fixed effects that may be included.

• Store the residuals of these regressions; namely,

̂𝑒𝐿
𝑖𝑠 ∶= (𝑌𝑖𝑠 − ̂𝛼𝐿,𝑠 − w′

𝑖𝑠�̂�𝐿) , ̂𝑒𝑅
𝑖𝑠 ∶= (𝑌𝑖𝑠 − ̂𝛼𝑅,𝑠 − w′

𝑖𝑠�̂�𝑅)

• Plot ̂𝑒𝐿
𝑖𝑠 and ̂𝑒𝑅

𝑖𝑠 on the running variable 𝑋𝑖𝑠.

The implication being heuristically tested here is that once the variation in w𝑖𝑠 is
accounted for, if the CIA is satisfied, the running should have no explanatory power
on the outcome variable. Therefore, the residuals ( ̂𝑒𝐿

𝑖 , ̂𝑒𝑅
𝑖 ) should be orthogonal to the

running variable 𝑋𝑖. This means that if the CIA is satisfied, plotting the residuals over
the score should ideally yield a horizontal line. Because of sampling variation, this never
happens in practice. Hence, to correctly visualize this relationship and to sweep away
sampling error, the command partitions the running variable in equally spaced bins
and computes within-bin averages of the residuals. As figure 2 shows, ciares displays
within-bin averages together with the linear regressions of the residuals on the running
variable. The option cmpr(1 1) also plots the simple linear regression of 𝑌𝑖𝑠 on 𝑋𝑖𝑠 for
comparison.
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. ciares w1 w2 w1sq w2sq w2Xw1, outcome(Y) score(X) bandwidth(7)
> site(site) nbins(10 10)
> gphoptions(xlabel(-6(3)6, nogrid) ylabel(,nogrid) title("")) cmpr(1 1)
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Figure 2. Visualization of the CIA

Up to this point, just the first of the two conditions underlying the CIA has been tested
and validated. However, the common support condition (3) also needs to be checked.
The command ciacs serves this precise purpose.

. ciacs w1 w2 w1sq w2sq w2Xw1, outcome(Y) score(X) bandwidth(7) assign(T)
> cutoff(0) site(site) pscore(pscore) gphoptions(title(""))

Common Support
N Out of CS Lower Bound Upper Bound

Control 1000 42 .00060943 .98419487
Treatment 1000 280 .00496089 .99999964
The common support is verified in the interval [0.0050,0.9842],
which contains 958 control units and 720 treated units.

The command estimates the propensity score for all units and computes the bounds for
the common support as

lb ∶= max { min
𝑖∶𝑇𝑖𝑠=0

̂𝑝𝑖𝑠, min
𝑖∶𝑇𝑖𝑠=1

̂𝑝𝑖𝑠} and ub ∶= min { max
𝑖∶𝑇𝑖𝑠=0

̂𝑝𝑖𝑠, max
𝑖∶𝑇𝑖𝑠=1

̂𝑝𝑖𝑠}

where ̂𝑝𝑖𝑠 is the estimated propensity score. Using these bounds, the command identifies
42 control units and 280 treatment units that are outside the common support region.
Those units should not be considered in the analysis and should be flagged. This can
be easily done in two steps. First, specify the option pscore(), which generates a
new variable containing the estimated propensity score. Second, use the bounds of the
common support stored in return list to mark units not in the common support.
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. generate incs = pscore >= e(CSmin) & pscore <= e(CSmax)

. tabulate incs T
Treatment Dummy

incs 0 1 Total

0 42 280 322
1 958 720 1,678

Total 1,000 1,000 2,000

In addition, the command ciacs allows the user to visualize the common support
using either histograms or kernel density estimators. Figure 3 shows the result obtained
using histograms.
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Figure 3. Visualization of common support condition

Now that both condition (2) and condition (3) have been verified, the commands
getaway and getawayplot can be used to extrapolate treatment effects and estimate
potential outcomes along the support of the running variable, respectively.
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. getaway w1 w2 w1sq w2sq w2Xw1, outcome(Y) score(X) bandwidth(7)
> cutoff(0) site(site) qtleplot nquant(5 5) boot(100)
> gphoptions(title("") ylabel(,nogrid)) genvar(effect_est)
Bootstrapping standard errors ... (100)

1 2 3 4 5
.................................................. 50
.................................................. 100

Extrapolation Results

Outcome Variable Y
Running Variable X
Number of observations

Treated 1000
Control 1000

Cutoff 0
Bandwidth 7
Bootstrap Iterations 100
Site Fixed Effects site
Method linear

Main Estimates

Estimate SE
ATNT 54.094 0.414
ATT 64.665 1.105

Within-Quantile Estimates

Estimate SE Xlb Xub
Left_1 58.736 1.098 -6.856 -2.589
Left_2 53.448 0.599 -2.584 -1.726
Left_3 52.461 0.368 -1.726 -1.031
Left_4 52.561 0.219 -1.030 -0.533
Left_5 53.263 0.204 -0.529 -0.001

Right_1 55.723 0.224 0.001 0.532
Right_2 58.078 0.779 0.532 1.099
Right_3 60.577 1.048 1.103 1.789
Right_4 65.985 0.934 1.793 2.658
Right_5 82.963 2.833 2.666 6.944
CIA Covariates: w1 w2 w1sq w2sq w2Xw1
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Figure 4. Estimated treatment effects over the support of the running variable

The command getaway prints the main specifics of the estimation procedure (out-
come variable, running variable, number of observations, cutoff, bandwidth, and so
forth) and two tables with the results. The first table contains the estimates for ATNT
𝜏(−ℎ,0) and ATT 𝜏[0,ℎ), together with bootstrapped standard errors. The second table
reports the treatment effect within quantiles of the running variable (first column);
bootstrapped standard errors (second column); and lower and upper bounds of the
running variable in each quantile (third and fourth columns). The running variable is
binned in 5 quantiles per side through the option nquant(5 5). All the information
contained in these two tables can also be visualized in a single graph by specifying the
option qtleplot. Figure 4 shows the estimated treatment effect in each quantile of the
running variable (gray triangles), together with bootstrapped standard errors (vertical
black solid lines) and the estimates of 𝜏[0,ℎ) (gray solid line to the right of the cutoff)
and 𝜏(−ℎ,0) (gray solid line to the left of the cutoff) with their bootstrapped standard
errors (dashed horizontal lines). Estimated treatment effects recover the asymmetric
U-shaped true treatment-effect function presented in figure 1(a). Moreover, the op-
tion genvar(effect_est) creates a new variable called effect_est that contains the
treatment effect for each unit estimated according to either (5) (default) or (6).

Finally, the command getawayplot uses kernel-weighted local polynomial smoothers
to recover the potential outcomes as functions of the running variable. Figure 5 displays
the estimated potential outcomes as functions of the running variable (gray dotted lines)
and reports 95% confidence bands by default. Estimates are obtained fitting kernel-
weighted local polynomials to the predicted value of a regression of the outcome on w𝑖𝑠
run separately on each side of the cutoff. Finally, within-bin averages are also reported
(gray crosses).
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. getawayplot w1 w2 w1sq w2sq w2Xw1, outcome(Y) score(X) bandwidth(7)
> cutoff(0) kernel(triangle) degree(2) nbins(30) site(site)
> gphoptions(xlabel(-6(3)6, nogrid) ylabel(,nogrid))
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Figure 5. Estimate potential outcomes over the support of the running variable

Comparing figure 5 with figure 1(a), one can graphically compare the goodness of
the estimation procedure.

10 Conclusion
This article introduced the getaway package, which estimates treatment effects away
from the cutoff in RD designs under a CIA.

Further work on the getaway package is planned. First, the actual package works
only for sharp RD designs; hence, its extension to fuzzy RD designs is necessary. Second,
there are several other RD designs in the literature in which extrapolation of treatment
effects might turn out to be useful. A nonexhaustive list of examples includes geographic
RDs (Keele and Titiunik 2015), dynamic RDs (Cellini, Ferreira, and Rothstein 2010),
and difference in discontinuities (Grembi, Nannicini, and Troiano 2016). Third, at the
date of publication of this article, the package getaway estimates the conditional expec-
tation functions of the potential outcomes using two different parametric alternatives.
Next major upgrades of the package should also contain nonparametric estimators (for
example, Nadaraya–Watson kernel regression and random forest for such functions).
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12 Programs and supplemental material
To install the software files as they existed at the time of publication of this article,
type

. net sj 24-3

. net install st0751 (to install program files, if available)

. net get st0751 (to install ancillary files, if available)

The latest software version can be found at https: // github.com / filippopalomba /
getaway-package.
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