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Abstract

This supplement contains all proofs, additional results, and other technical details.
Section SA1 describes the setup and notation, states the assumptions we rely on,
and introduces some auxiliary results. Section SA2 illustrates the main technical
results. Section SA3 describes in detail the setting used for the simulation study.
Section SA4 contains all the proofs.
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Table SA-1: Summary of Notation

Quantity Description

Environment
A set of actions
A number of actions
Ra reward for action a ∈ A
Ca censoring mechanism for action a ∈ A
Xa observed covariates for action a ∈ A
R support of rewards
X support of covariates
Z support of (Ra, Ca,Xa)

Cj class of bandits, j ∈ {0, 1, 2}
νa probability measure of (Ra, Ca,Xa) for action a ∈ A
θa unconditional mean reward for action a ∈ A
θ best mean reward
a⋆ action associated with the best mean reward
θa(Xa) conditional (onXa) mean reward for action a ∈ A
qa probability of censoring for action a ∈ A
Acen sum of inverse of censoring probabilities
q minimum probability of censoring across actions
qa(Xa) conditional probability of censoring
σa variance proxy of the reward for action a ∈ A
σ̄ largest variance proxy across all actions
K uniform upper bound for all θas

Algorithms
T number of rounds
Π space of policy functions
πx
t policy function at round t ∈ [T ], x ∈ {UCB,DR,ODR}

At action chosen at round t ∈ [T ]

RegretxT pseudo-regret of algorithm x ∈ {UCB,DR,ODR}
Regret⋆T (C) minimax regret over class of bandits C and policies Π
δ probability with which high-probability bounds do not hold
Pa(t) times action a ∈ A has been played at the beginning of round t ∈ [T ]

Na(t) times the reward of action a ∈ A has been observed at the beg. of round t ∈ [T ]

R̂x
a(t) mean reward estimator, x ∈ {UCB,DR,ODR}

R̃x
a(t, δ) optimistic mean reward estimator, x ∈ {UCB,DR,ODR}

bxa(δ) bonus term, x ∈ {UCB,DR,ODR}
q
λ

minimum regularized probability of censoring across actions
q̂a(·) estimator of the conditional probability of censoring for action a ∈ A
θ̂a(·) estimator of the conditional expected reward for action a ∈ A
Errt(x) ℓ2-error rate for estimator x ∈ {(q̂a, θ̂a), a ∈ A}
λ regularization parameter for UCB algorithm
KODR regret constant



SA1 Introduction

This section introduces the notation used in this project (Section SA1.1), describes the
setup and the algorithms analyzed (Sections SA1.2 and SA1.3), outlines the assumptions
I rely on (Section SA1.4), and presents some auxiliary lemmas that will prove useful
throughout (Section SA1.5).

SA1.1 Notation

Sets. In general, blackboard bold uppercase letters (e.g.,N,R) are used to denote stan-
dard sets of numbers. All the other sets are denoted with uppercase calligraphic letters
(e.g.,F ,G). The set of natural numbers is denoted with N, the set of real numbers with
R, the set of non-negative real numbers with R+, and the set of positive real numbers
with R++. I write Rd for d ∈ N to denote Rd =

Śd
j=1 R, where

Ś

denotes the Cartesian
product between sets. I denote an ordered set {1, . . . , n}, n ∈ N with [n]. The comple-
ment of a set F is denoted as F . I denote the sigma-algebra generated by a random
variable X as σ(X) and with B(S) the Borel σ-algebra on the topological space S.

Linear algebra. Throughout the text, 0k and 1k denote the k-dimensional zero and
one vectors, respectively. For a k by m matrix A I use A⊤ to denote the transpose
of A and, if k = m and A is non-singular I use A−1 to denote the inverse of A. For
x ∈ Rk, I write x ⪰ 0k to denote the component-wise inequality in Rk. Let x ∈ Rd I

use |x| :=
(∑

i∈[d] x
2
i

)1/2
to the denote the Euclidean norm and ∥x∥∞ := supi∈[d] |xi| to

denote the sup-norm.

Asymptotic statements. For two positive sequences {an}n , {bn}n, I write an = O(bn)

if ∃M ∈ R++ : an ≤ Mbn for all large n, an = o(bn) if limn→∞ anb
−1
n = 0, an = Õ(bn) if

∃ k ∈ N, C ∈ R++ : an = O(bn ln
k(Cn)) an ≲ bn if there exists a constant C ∈ R++ such

that an ≤ Cbn for all large n, and an ∼ bn if an/bn → 1 as n→∞. For two sequences of
random variables {An}n , {Bn}n, I write An = oP(Bn) if ∀ ε ∈ R++, limn→∞ P[|AnB

−1
n | ≥

ε] = 0 and An = OP(Bn) if ∀ ε ∈ R++,∃M,n0 ∈ R++ : P[|AnB
−1
n | > M ] < ε, for n > n0.

Statistical Distributions. I denote a (possibly multivariate) Gaussian random variable
with N(a,B), where a denotes the mean and B the variance-covariance, with Be(p) a
Bernoulli distribution with p ∈ (0, 1] denoting the success probability, and with sG(σ) a
sub-Gaussian random variable. A random variable X is sub-Gaussian with variance
proxy σ > 0 if ∀λ ∈ R,E[exp(λX)] ≤ exp(λ2σ2/2) and E[X] = 0. With a slight abuse of
terminology, I say that a random variable Y with non-zero mean is sub-Gaussian when
(Y − E[Y ]) ∼ sG(σ). If {Xt}∞t=1 is an F-adapted martingale difference sequence with
respect to some filtration F = {Ft}∞t=1, then it is understood that Xt ∼ sG(σ) requires
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∀λ ∈ R,E[exp(λXt) | Ft] ≤ exp(λ2σ2/2) and E[Xt | Ft] = 0. All probability measures
are assumed to belong to the set of all Borel probability measures on an appropriately
defined topological space S.

Table SA-1 summarizes the notation specific to this project. Notation that is only used
in the proofs is omitted from the table and defined throughout.

SA1.2 Setup

I start by describing a generic instance of a stochastic MAB with possibly missing
rewards and the decision-maker that interacts with such an environment.

Setting. A decision-maker faces a sequential decision problem over T ∈ N rounds in a
stochastic environment. At the beginning of each round t ∈ [T ], using all the information
available at that point, the decision-maker selects an action At ∈ A := {1, . . . , A}. Each
action a ∈ A is associated with a tuple of random variables: a reward Ra ∈ R ⊆ R, an
indicator for not being missing Ca ∈ {0, 1}, and some covariates Xa ∈ X ⊆ Rk, k ∈ N.
A stochastic MAB problem with missing rewards is defined as a collection of random
variables {(Ra,ℓ, Ca,ℓ,Xa,ℓ)}a∈A,ℓ∈[T ] with the first index running over the set of actions
A, the second index running over rounds, and satisfying the following three conditions
for fixed actions a, a′ ∈ A : a ̸= a′:

1. {(Ra,t, Ca,t,Xa,t)}t∈[T ] are T independent draws from (Ra, Ca,Xa), which is dis-
tributed according to some (unknown) probability measure νa defined on the
measurable space (R× {0, 1} × X , σ(Ra, Ca,Xa));

2. (Ra, Ca,Xa) ⊥⊥ (Ra′ , Ca′ ,Xa′), so that the unknown joint distribution of {(Ra, Ca,Xa)}a∈A
can be defined as ν =

∏
a∈A νa;

3. the reward Ra,t is observed by the decision-maker only if Ca,t = 1.

Each action a ∈ A has an associated mean reward

θa ≡ θa(ν) = Eν [Ra],

which I assume to be finite. I define the best (in hindsight) action, the associated best
mean reward, and the sub-optimality gap as

a⋆ := argmax
a∈A

θa, θ := max
a∈A

θa, ∆a := θ − θa, a ∈ A.

It follows from the description above that all that is needed to characterize a MAB with
possibly missing rewards is the collection of probability measures {νa}a∈A. In this work,
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I focus on the following class of bandits

C :=
{
(νa)a∈A : ν [R]

a ∈ SG(σa), ν
[C]
a = Be(qa), qa ∈ (0, 1]

}
,

where ν
[Y ]
a denotes the marginal of νa with respect to Y ∈ {C,R} and SG(σ) denotes

the space of sub-Gaussian probability distribution with variance proxy at most σ > 0,
and Be(p) denotes the probability distribution of a Bernoulli random variable with
parameter p. The class of bandits C is very general, as it only restricts the mean reward
to be finite, the tails to be sub-Gaussian, and rules out the trivial case in which the
reward of action a ∈ A is not observable (which would occur when qa = 0). Finally, I
define σ̄ :=

√
maxa∈A σ2

a . I conjecture that many of the results proved in this appendix
can be extended to more general families of random variables, such as the class sub-
Exponential or sub-Weibull random variables. For example, Lemma SA-1 can be shown
to hold for sub-Exponential random variables using an identical strategy to the one
used throughout.

Decision-maker. The interaction between the decision-maker and the environment
produces the following collection of random variables

{(At,Zt)}t∈[T ], Zj := (RAj ,j, CAj ,j,X
⊤
Aj ,j

)⊤.

Each decision-maker is characterized by a policy that maps the history up to round t,
{(Aℓ, RAℓ,ℓ, CAℓ,ℓ,X

⊤
Aℓ,ℓ

)}ℓ∈[t−1], to the space of probability distributions over actions
∆(A). Denote the space of policies as

Π :=
{
π : π = {πt}t∈[T ], πt : (A×Z)t−1 → ∆(A)

}
, Z := R× {0, 1} × X .

I use interchangeably the words “decision-maker”, “algorithm”, and “policy” when
referring to π ∈ Π.

Protocol 1 below describes the interaction between the decision-maker and the MAB
with censoring.

Regret. The pseudo-regret of a decision-maker following a policy π in a MAB with
missing rewards ν ∈ C is

RegretT (π; ν) =
T∑
t=1

(max
a∈A

θa − Eν [RAt,t]) = Tθ −
T∑
t=1

θAt ,
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Protocol 1 Multi-Armed Bandit with Missing Rewards
Consider a generic bandit ν ∈ C,where ν = (νa)a∈A

for ℓ = 1, 2, . . . , T do
Decision-maker chooses Aℓ = a according to some policy πt

Nature samples (Ca,ℓ, Ra,ℓ,Xa,ℓ) ∼ νa
if Ca,ℓ = 1 then

Decision-maker observes Ra,ℓ

else
Decision-maker receives no feedback

end if
end for

which depends on ν via the average rewards, and it is a random quantity because the
{At}t∈[T ] are random. Note that the latter is true even if the policies considered are
deterministic. The reason is that At depends on {Zℓ}t−1

ℓ=1 which are random. In what
follows, I omit the dependence of the regret on ν and simply write RegretT (π).

SA1.3 Algorithms

In what follows, I focus on the popular UCB algorithm (Auer et al., 2002) and modifica-
tions thereof as the algorithm used by the decision-maker to obtain a policy {πUCB

t }t∈[T ].
The UCB algorithm selects the optimal policy using optimistic estimates of previous
rewards. Hereafter, I first describe the classic UCB algorithm and then showcase the
novel doubly-robust version proposed in this project, first in its unfeasible (oracle)
version and then in its feasible form.

SA1.3.1 Classic UCB Algorithm

Before formalizing the algorithm, it is necessary to introduce some notation:

• The number of times an arm a ∈ A has been pulled at the beginning of round
t ∈ [T ]

Pa(t) :=
t−1∑
ℓ=1

1[Aℓ = a].

• The number of times the reward Ra has been observed at the beginning of round
t ∈ [T ]

Na(t) :=
t−1∑
ℓ=1

1[Aℓ = a]Ca,ℓ.

• The (regularized) estimate for the mean reward of action a ∈ A at the beginning
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of round t ∈ [T ] is

R̂UCB
a (t) =

1

Na(t) + λ

t−1∑
ℓ=1

1[Aℓ = a]Ca,ℓRa,ℓ =
1

Pa(t) + λ

t−1∑
ℓ=1

1[Aℓ = a]
Ca,ℓRa,ℓ

q̂a(ℓ)
, (1)

where q̂a(ℓ) := Na(ℓ)+λ
Pa(ℓ)+λ

and λ > 0 is a regularization parameter that prevents
the estimator from being ill-defined whenever, after initialization, it occurs that
Na(t) = 0 for some a ∈ A and t ≥ 1.

• The optimistic mean reward estimate of action a ∈ A after t ∈ [T ] rounds is

R̃UCB
a (t, δ) = R̂UCB

a (t) + bUCBa,t (δ),

where the “bonus” term bUCBa,t (δ) is chosen to make sure that the optimistic mean
reward estimate R̃UCB

a (t, δ) upper bounds the true mean reward θa with high
probability. In this specific case, I define

bUCBa,t (δ) :=
σ̄

q

√
2 ln(2AT/δ)

Pa(t) + λ
+

λK

Na(t) + λ
,

where K is some constant larger than θ, q := infa,t q̂a(t), and δ ∈ (0, 1). Intuitively,
the first term in bUCBa,t (δ) governs the probability with which we want the optimistic
estimate to overestimate the mean reward, whereas the second term takes into
account the bias induced by the regularization term λ > 0. Lemma SA-5 formally
justifies the particular choice of bUCBa,t (δ) described above. Finally, note that the
introduction of the regularization parameter λ > 0makes q bounded away from 0.

The way the UCB algorithm works is straightforward: at round t ∈ [T ], it selects the arm
a that has the highest optimistic mean reward estimate. Algorithm 1 below summarizes
all the steps needed by the classic UCB algorithm.

Procedure 1 Update Estimators for UCB
for a ∈ [A] do

Na(t+ 1)← Na(t) + 1[At = a]Ca,t

Pa(t+ 1)← Pa(t) + 1[At = a]

R̂a(t+ 1)← 1
Na(t+1)+λ

∑t
ℓ=1 1[Aℓ = a]Ca,ℓRa,ℓ

bUCBa,t+1(δ)← σ̄
q
λ

√
2 ln(2AT/δ)
Pa(t+1)+λ

+ λK
Na(t+1)+λ

R̃a(t+ 1, δ)← R̂a(t+ 1) + bUCBa,t+1(δ)
end for
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Algorithm 1 UCB algorithm
Input: λ > 0, q

λ
, σ̄, T,A, δ,K

Initialization: pull each arm once, get R̂UCB
a (0), set Pa(0) = 1, Na(0) = Ca,0,∀ a ∈ A

1: for t = 1, 2, . . . , T do
2: pull arm at = argmaxa∈A R̃UCB

a (t, δ) and set πUCB
t = at

3: call Update Estimators for UCB (Procedure 1)
4: end for

Output: πUCB = {πUCB
t }t∈[T ]

SA1.3.2 Oracle Doubly-Robust UCB Algorithm

Let the true conditional mean reward and probability of rewards not being missing for
arm a ∈ A as

θ⋆a(Xa) := Eν [Ra | Xa], q⋆a(Xa) = Eν [Ca | Xa] ∈ [q
a
, 1]

almost surely. Throughout, I use interchangeably the terms “probability of rewards not
being missing” and “probability of missingness”.

The two doubly-robust versions of the classic UCB algorithm – one feasible, one unfeasi-
ble – described here differ from the standard one because they rely on alternative mean
reward estimators and bonus terms.

The oracle doubly-robust UCB algorithm (ODR-UCB) uses the following mean reward
estimator

R̂ODR
a (t) : =

1

Pa(t)

t−1∑
ℓ=1

1[Aℓ = a]

(
Ra,ℓCa,ℓ

qa(Xa,ℓ)
− θa(Xa,ℓ)

qa(Xa,ℓ)

(
Ca,ℓ − qa(Xa,ℓ)

))
(2)

=
1

Pa(t)

t−1∑
ℓ=1

1[Aℓ = a]

(
Ca,ℓ(Ra,ℓ − θa(Xa,ℓ))

qa(Xa,ℓ)
+ θa(Xa,ℓ)

)
,

for some known functions {θa(·), qa(·)}a∈A. The “Oracle” part comes from the require-
ment that qa(·) and θa(·) being known functions, whilst the “Double-Robust” follows
from the fact that only one among qa(·) = q⋆a(·) and θa(·) = θ⋆a(·) needs to be true to make
R̂ODR

a (t) a consistent estimator of θa (see Lemma SA-10). The optimistic mean reward
estimator is defined accordingly as

R̃ODR
a (t) = R̂ODR

a (t) + bODR
a,t (δ), bODR

a,t (δ) := KODR

√
2 ln(2AT/δ)

Pa(t)
,

where KODR := σ̄
q
+ σ̄ and q := mina qa. Algorithm 2 details all the steps needed by

ODR-UCB.
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Procedure 2 Update Estimators for ODR-UCB
for a ∈ [A] do

Na(t+ 1)← Na(t) + 1[At = a]Ca,ℓ

Pa(t+ 1)← Pa(t) + 1[At = a]
Update qa and θa if required
R̂ODR

a (t+ 1) := 1
Pa(t+1)

∑t
ℓ=1 1[Aℓ = a]

(
Ca,ℓ(Ra,ℓ−θa(Xa,ℓ))

qa(Xa,ℓ)
+ θa(Xa,ℓ)

)
R̃ODR

a (t+ 1, δ)← R̂ODR
a (t+ 1) + bODR

a,t (δ)
end for

Algorithm 2 ODR-UCB algorithm
Input: λ > 0, T,A, {qa(·), θa(·)}a∈A
Initialization: pull each arm once, get R̂ODR

a (0) and set Pa(0) = 1, Na(0) =
Ca,0,∀ a ∈ A

1: for t = 1, 2, . . . , T do
2: pull arm at = argmaxa∈A R̃ODR

a (t, δ) and set πODR
t = at ▷ ties are broken

randomly
3: call Update Estimators for ODR-UCB (Procedure 2)
4: end for

Output: πODR = {πODR
t }t∈[T ]

SA1.3.3 Feasible Doubly-Robust UCB Algorithm

The feasible doubly-robust UCB algorithm (DR-UCB) differs from ODR-UCB because it
attempts to estimate the true conditional mean reward and probability of missingness
for each arm. To grant good properties in terms of regret, such estimation needs to be
conducted in appropriate ways, which is formalized in Assumptions SA5(c)-SA5(d).

Once θ̂a and q̂a have been constructed, the following estimator for mean rewards can be
obtained as follows:

R̂DR
a (t) :=

1

Pa(t)

t−1∑
ℓ=1

1[Aℓ = a]

(
Ca,ℓ(Ra,ℓ − θ̂a(Xa,ℓ))

q̂a(Xa,ℓ)
+ θ̂a(Xa,ℓ)

)
.

The optimistic mean reward estimator for DR-UCB is defined as

R̃DR
a (t, δ) = R̂DR

a (t) + bDR
a,t (δ), bDR

a,t (δ) = bODR
a,t (δ) + b

[1]
a,t(δ) + b

[2]
a,t(δ) + b

[3]
a,t(δ),

bODR
a,t (δ) = KODR

√
2 ln(2AT/δ)

Pa(t)
, b

[1]
a,t(δ) :=

σ̄

q2

√
2 ln(2AT/δ)

Pa(t)
Errt(q̂a),

b
[2]
a,t(δ) :=

1

q

√
2 ln(2AT/δ)

Pa(t)
Errt(θ̂a), b

[3]
a,t(δ) = Errt(θ̂a)Errt(q̂a),
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where

Errt(θ̂a) :=

√√√√ 1

Pa(t)

t−1∑
ℓ=1

1[Aℓ = a](θ̂a(Xa,ℓ)− θa(Xa,ℓ))2 ,

and

Errt(q̂a) :=

√√√√ 1

Pa(t)

t−1∑
ℓ=1

1[Aℓ = a](q̂a(Xa,ℓ)− qa(Xa,ℓ))2

are the sample ℓ2 estimation errors the mean reward estimator incurs as it relies on the
estimated counterparts of θa(·) and qa(·).

Finally, Algorithm 3 describes in greater detail how the DR-UCB algorithm works.

Procedure 3 Update Estimators for DR-UCB
for a ∈ [A] do

Na(t+ 1)← Na(t) + 1[At = a]Ca,ℓ

Pa(t+ 1)← Pa(t) + 1[At = a]
Update q̂a and θ̂a if required

R̂DR
a (t+ 1) := 1

Pa(t+1)

∑t
ℓ=1 1[Aℓ = a]

(
Ca,ℓ(Ra,ℓ−θ̂a(Xa,ℓ))

q̂a(Xa,ℓ)
+ θ̂a(Xa,ℓ)

)
R̃DR

a (t+ 1, δ)← R̂DR
a (t+ 1) + bDR

a,t (δ)
end for

Algorithm 3 DR-UCB algorithm
Input: λ > 0, T,A, δ, {q̂a(·), θ̂a(·)}a∈A
Initialization: pull each arm once, get R̂DR

a (0) and set Pa(0) = 1, Na(0) = Ca,0,∀ a ∈
A

Nuisances: get estimates {q̂a(Xa,0), θ̂a(Xa,0)}a∈A} according to Assumption SA5(iii)
1: for t = 1, 2, . . . , T do
2: pull arm at = argmaxa∈A R̃DR

a (t, δ) and set πDR
t = at

3: call Update Estimators for DR-UCB (Procedure 3)
4: end for

Output: πDR = {πDR
t }t∈[T ]

SA1.4 Assumptions

Assumption SA1 is a strong assumption that implies that rewards are missing at random.
Sub-gaussianity allows to control the tail behavior of rewards.

Assumption SA1 (Reward-Independent Missingness). For each action a ∈ A, Ca ⊥⊥ Ra

and Ra ∼ sG(σa).

8



Assumption SA2 relaxes the previous assumption and instead assumes the process that
causes missing data does not depend on rewards only conditional on a vector of observ-
able variablesXa. On top of that, Assumption SA2 has two other mild requirements: (i)
the conditional expectation of each Ra is uniformly bounded over X ; (ii) the probability
of observing rewards is non-zero (qa > 0).

Assumption SA2 (Model- and Design-based Ignorability). For each a ∈ A, either

Eν [Ra | Xa, Ca] = Eν [Ra | Xa] =: θa(Xa) a.s. (MB)

or
Eν [Ca | Xa, Ra] = Eν [Ca | Xa] =: qa(Xa) a.s. (DB)

holds. Moreover, Ra | Xa,∼ sG(σa) and qa(x) ∈ [q, 1], for some constants 0 ≤ Kθ <∞ and
q ∈ (0, 1].

Assumptions SA3 and SA4 are equivalent in all aspects and have been differentiated only
for illustration and interpretation purposes. Assumption SA3 requires one between the
true conditional probability of missingness, q⋆a(x), and the true conditional expectation
of rewards, θ⋆a(x), to be a known function. As mentioned, Assumption SA4 is equivalent,
but requires such known functions to be the probability limit of an estimator.

Assumption SA3 (Oracle Double Robustness). For each a ∈ A,x ∈ X , either

qa(x) = q⋆a(x), (a)

or

θa(x) = θ⋆a(x), (b)

holds for some known functions qa : X → [q, 1] and θa : X → R.

Assumption SA4 (Double Robustness). For each a ∈ A,x ∈ X , either

qa(x) = q⋆a(x), (a)

holds or

θa(x) = θ⋆a(x), (b)

where qa(x) and θa(x) are the probability limits as T → ∞ of the estimators q̂a(·) and θ̂a(·),
respectively.

9



Assumption SA5 disciplines the estimation of the nuisance functions {(qa(·), θa(·), a ∈
A}. Assumption SA5(b) requires the estimator to bound the estimated probability of
missingness away from 0, a typical regularity condition in such problems. To avoid
over-fitting biases, Assumption SA5(c) asks the nuisance functions to be estimated in
an independent (conditional on Xa) sample. Lastly, SA5(d) controls the estimation
error of the nuisance estimators in two ways: (i) the estimation error of each nuisance
need to be shrinking in Pa(t); (ii) the product of the estimation errors must decay faster
than 1/

√
Pa(t) . These conditions make the sampling error dominate the estimation

error induced by the fact that {(θa(·), qa(·)), a ∈ A} are estimated.

Assumption SA5 (Nuisance Estimation). For each a ∈ A, the following are true:

(a) (double robustness) either q̃a(x) = qa(x) or θ̃a(x) = θa(x);

(b) (truncation) ∀x ∈ X , q̂a(x) ∈ [q, 1], q ∈ (0, 1];

(c) (independence) (q̂a(Xa), θ̂a(Xa)) ⊥⊥ (Ra, Ca) | Xa;

(d) (ℓ2-error rate) there exist rates α > 1/2, αq > 0, and αθ > 0 such that

Errt(q̂a) ≲
1

Pa(t)αq
, Errt(θ̂a) ≲

1

Pa(t)αθ
, Errt(q̂a)Errt(θ̂a) ≲

1

Pa(t)α

with probability 1− δc, δc ∈ (0, 1).

SA1.5 Auxiliary Lemmas

The following lemma helps bound sums involving dependent random variables.

Lemma SA-1 (Freedman’s Inequality). Let
{(

Dk,Fk
)}

k≥1
be a martingale difference se-

quence and let {νk}nk=1 be random variables such that νk is Fk−1-measurable. If ∀κ ∈ R \{0}

E
[
eκDk | Fk−1

]
≤ eκ

2ν2k/2 a.s.,

then ∣∣∣∣∣∣
n∑

k=1

Dk

∣∣∣∣∣∣ ≤
√√√√2 log(2/δ)

n∑
k=1

ν2
k

with probability at least 1− δ. Furthermore, if
∑n

k=1 ν
2
k ≤ V a.s., then∣∣∣∣∣∣

n∑
k=1

Dk

∣∣∣∣∣∣ ≤√2V log(2/δ)

with probability at least 1− δ.
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[Proof]

The next lemma shows that the product of a sub-Gaussian random variable and a
Bernoulli random variable is still sub-Gaussian despite imposing no structure on the
joint behavior of the two variates.

Lemma SA-2. Let X ∼ sG(σ), σ > 0, Y ∼ Be(p), p ∈ (0, 1], and Z := X · Y . Then
Z ∼ sG(σ).

[Proof]

I had a much more slack result showing that Z ∼ sE(2σ, 2
√
2 σ), where sE denotes a sub-

Exponential random variable. This tighter result was suggested by the user VHarisop
in the following StackExchange post. Note that nothing is assumed on the joint of X
and Y .

The next lemma shows that sub-Gaussianity of Y | X is inherited by the fluctuations of
E[Y | X] around E[Y ].

Lemma SA-3. Let Y | X ∼ sG(σ), σ > 0, and define W := E[Y | X] − E[Y ]. Then,
W ∼ sG(σ).

[Proof]

Finally, the next lemma shows some useful properties for the Kullback-Leibler diver-
gence, DKL, between two probability distributions.

Lemma SA-4. Let P and Q be two probability distributions on X × Y that admit densities p
and q, with respect to the Lebesgue measure. Then,

DKL(P,Q) = DKL(PX , QX) + EX∼PX
[DKL(PY |X , QY |X)].

Furthermore, if X ⊥⊥ Y , then

DKL(P,Q) = DKL(PX , QX) +DKL(PY , QY ).

[Proof]

11
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SA2 Main Results

In this section, I analyze how the algorithms described in Section SA1.3 perform in the
two variations of the MABwith missing rewards problem described in Section SA1.2. In
Section SA2.1, I assume that rewards and censoring mechanisms are independent and
show that the standard UCB algorithm still achieves nearly-optimal regret. In Section
SA2.2, I relax the independence assumption and show that the UCB algorithm has
linear regret, whereas ODR-UCB and DR-UCB both possess nearly-optimal regret rates.
Specifically, I provide high-probability bounds that hold uniformly over the number of
rounds T and a subclass of bandits contained in C.

The probability measure underlying all these statements is a probability measure in-
duced by the interaction between the policy π ∈ Π and some bandit ν ∈ C. Formally, let
Rt = RAt,t, Ct = CAt,t, and Xt = XAt,t. The probability measure considered throughout
is the probability distribution associated to the tuple (A1, R1, C1,X1, . . . , AT , RT , CT ,XT )

on themeasurable space (ΩT ,GT ),whereΩT := (A×R×{0, 1}×X )A·T and GT := B(ΩT ).
For more technical details on the construction of the appropriate measures and the un-
derlying probability space, I refer the reader to Chapter 4.4 in Lattimore and Szepesvári
(2020) and references therein.

SA2.1 Reward-independent Missingness

In what follows, I provide an upper bound for the regret of UCB using standard argu-
ments. Namely, I consider a “good” event and show that it occurs with high probability
in the setting considered throughout. In this spirit, define such an event as

G(δ1, δ2) = FUCB(δ1) ∩ FMIS(δ2),

for some δ1, δ2 ∈ (0, 1), where

FUCB(δ) :=

{
∃ a ∈ A, t ∈ [T ],

∣∣∣R̂UCB
a (t)− θa

∣∣∣ ≥ bUCBa,t (δ)

}
,

FMIS(δ) :=
{
∃ a ∈ A, t ∈ [T ] : Na(t) ≤ (1− δ)qaPa(t), Pa(t) ≥ T a

}
,

where T a := 1+ 24 ln(T )
qa

. Under the good event: (i) for each action, the optimistic reward
estimator always covers the true mean; (ii) the censoring mechanism is not too extreme
in terms of percentage deviation from its mean.

The next lemma justifies the particular choice of bonus term for the UCB algorithm, that
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is

bUCBa,t (δ) :=
σ̄

q
λ

√
2 ln(2AT/δ)

Pa(t) + λ
+

λK

Na(t) + λ
.

The following result shows that the absolute deviation between the mean reward esti-
mator R̂UCB

a (t) and the true mean reward θa is larger than bUCBa,t (δAT )with probability at
most δ.

Lemma SA-5. Let Assumption SA1 hold, δ ∈ (0, 1), a ∈ A, and t ∈ [T ]. Then∣∣∣R̂UCB
a (t)− θa

∣∣∣ ≥ bUCBa,t (δAT )

with probability at most δ.

[Proof]

Lemma SA-6, using Lemma SA-5 as a building block, quantifies the probability with
which FUCB(δ) realizes. Lemma SA-7 serves a similar purpose for FCEN(δ). Lemma
SA-8 shows an implication of the event FUCB

(δ), which turns out to be useful when
bounding the regret.

Lemma SA-6. Let Assumption SA1 hold and δ ∈ (0, 1). Then

P[FUCB(δ)] ≤ δ.

[Proof]

Lemma SA-7. Let Assumption SA1 hold, δ ∈ (0, 1), and a ∈ A. Then

P[FMIS(δ)] ≤ 2

δ2
T 1−12δ2Acen,

where Acen :=
∑

a∈A q−1
a .

[Proof]

Lemma SA-8. Let Assumption SA1 hold and δ ∈ (0, 1). With probability at least 1 − δ or,
equivalently, under the event FUCB(δ), it holds that

∀ a ∈ A, t ∈ [T ], R̃UCB
a (t, δ) > θa.

[Proof]

13



Before stating the first theorem, I present Lemma SA-9. This is a technical lemma that
plays a crucial role in bounding the reciprocal of the (random) number of times an arm
has been pulled and its feedback observed. This quantity needs to be handled because
of the second term in bUCBa,t (δ) that addresses the presence of regularization bias.

Lemma SA-9. Let Assumption SA1 hold and δ ∈ (0, 1). With probability at least 1 − δ or,
equivalently, under the event FMIS(δ), it holds that

T∑
t=1

1

Na(t) + λ
≤ Acen

1− δ
ln

(
T

Acen

+
λ

1− δ

)
,

and
T∑
t=1

1√
Na(t) + λ

≤ Acen√
1− δ

√
T

Acen

+
λ

1− δ
.

[Proof]

I am now able to state and prove the first main result: the standard UCB algorithm has
optimal (up to logarithmic factors) regret when the process that causes missing data
does not depend on rewards.

Theorem SA-1. Let Assumption SA1 hold, λ = o(T 1/2), δ1 ∈ (0, 1), δ2 =
√

1+κ
12

, and κ > 0.

Then, for any T ∈ N and bandit ν ∈ C1

RegretT (π
UCB) ≤ 4σ̄

q
λ

√
2AT ln(2AT/δ1) + o(

√
T ) + AK,

with probability at least 1− δ1 −O(T−κ).

[Proof]

SA2.2 Reward-dependent Missingness

Now, I relax Assumption SA1 and instead assume that rewards and the censoring
mechanisms are independent only conditional on a vector of covariatesXa. Accordingly,
in this section, the class of bandit considered is

C2 :=
{
ν = (νa)a∈A : ν [C]

a = Be(qa), qa ∈ (0, 1], and Assumption SA2 holds
}
.

In this more complex setting, the sample average of the observed rewards R̂UCB
a (t), is not

a consistent estimator of θa anymore. On the contrary, R̂ODR
2 (t) and R̂DR

2 (t) are consistent
estimators for θa under Assumption SA3 and Assumptions SA4-SA5, respectively.

14



Next, I show via an example that the min-max regret of UCB grows linearly with the
number of rounds T .

SA2.2.1 Classic UCB Algorithm

It is not hard to find instances of bandits in C2 that make the regret of the standard
UCB algorithm grow linearly with T . For example, suppose that A = {1, 2}, Ca ∼
Be(1/2), a ∈ A, andR1 ∼ Unif([0, 1/2]), if C1 = 1,

R1 ∼ Unif([1/2, 1]), if C1 = 0,
, R2 ∼ Unif([0, 3/4]).

As t grows large, the probability limit of R̂UCB
a (t) is Eν [Ra | Ca = 1]. Under Assumption

SA3, the probability limit of R̂ODR
2 (t) is θa, whereas the same holds for R̂DR

2 (t) under
Assumptions SA4-SA5 (see Lemma SA-10 and Lemma SA-11 for formal arguments).
For the second arm, Eν [R2 | C2 = 1] = θ2, thus R̂2(t) and R̂ODR

2 (t) share the same
probability limit. However, for the first arm θ1 = 1/2 > 1/4 = Eν [R1 | C1 = 1], thus
the two mean reward estimators converge to different values. In this example, the
optimal arm is a⋆ = 1 because θ1 = 1/2 > 3/8 = θ2. The ODR-UCB uses the right
mean reward estimator and consistently chooses the first arm. On the contrary, the
standard UCB algorithm will eventually end up stuck selecting the second arm because
E[R1 | C1 = 1] = 1/4 < 3/8 = E[R2 | C2 = 1].

The example above belongs to the class of bandits C2, for which the standard UCB
algorithm consistently selects a suboptimal arm, leading to regret that grows linearly
with T . More generally, the standard UCB algorithm has linear regret in all those bandits
in which the censoring is negatively correlated with the rewards, that is smaller rewards
are observed with higher probability. When such censoring is not properly addressed,
the estimated ranking of actions might be a scrambled version of the true one.

Now, I proceed showing that ODR-UCB and DR-UCB achieve nearly optimal regret rates.

SA2.2.2 Oracle Doubly-Robust UCB Algorithm

The next lemma justifies the particular choice of bonus term for theODR-UCB algorithm:

bODR
a,t (δ) := KODR

√
2 ln(2AT/δ)

Pa(t)
.

This result will also be useful when illustrating the properties of the feasible version of
this algorithm.
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Lemma SA-10. Let Assumptions SA2 and SA3 hold with q > 0, δ ∈ (0, 1), a ∈ A, and t ∈ [T ].
Then, with probability at most δ, it holds that∣∣∣R̂ODR

a (t)− θa

∣∣∣ ≥ bODR
a,t (ATδ).

[Proof]

The following theorem provides a high-probability regret bound for the ODR-UCB
algorithm that holds uniformly over any horizon T and for any bandit in the class C2.
Since this result is a special case of Theorem SA-3, I do not present a separate proof.
Instead, I refer the reader to the proof of that more general result.

Theorem SA-2. Let Assumptions SA2 and SA3 hold and δ ∈ (0, 1). Then, for any horizon
T ∈ N and bandit ν ∈ C2

RegretT (π
ODR) ≤ 4σ̄

q
λ

√
AT ln(2AT/δ) + AK

with probability 1− δ.

[Proof]

The above result claims that, under Assumption SA2, the ODR-UCB algorithm achieves
a nearly optimal rate for the worst-case regret.

SA2.2.3 Feasible Doubly-Robust UCB Algorithm

The major drawback of the ODR-UCB algorithm is that it is unfeasible to use in practice.
Indeed, Assumption SA3 is particularly stringent as it requires both the conditional
probability of censoring qa(·) and the conditional expected reward function θa(·) to be
known for each action a ∈ A. This assumption can be relaxed by relying on appropriate
estimators q̂a(x) and θ̂a(x) (in the sense of Assumption SA5), whose probability limits
are denoted as qa(x) and θa(x), respectively, for each x ∈ X . It then suffices to assume
that at least one of them is correctly specified, i.e., either qa(x) = q⋆a(x) holds or θa(x) =
θ⋆a(x); see Assumption SA4 for a formalization of this concept.

Once appropriate θ̂a and q̂a have been constructed for each a ∈ A, the feasible doubly-
robust mean reward estimator is

R̂DR
a (t) =

1

Pa(t)

t−1∑
ℓ=1

1[Aℓ = a]

(
Ca,ℓ(Ra,ℓ − θ̂a(Xa,ℓ))

q̂a(Xa,ℓ)
+ θ̂a(Xa,ℓ)

)
.
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The next lemma shows that the bonus term for the DR-UCB algorithm has been chosen
appropriately in the sense that it controls the probability with which R̂DR

a (t) deviates
from θa.

This result is of independent interest as it is the first one that provides high-probability
bounds for a doubly-robust estimator under mild assumptions. The strategy of the proof
is simple: it first decomposes R̂DR

a (t) as the sum of R̂ODR
a (t) and three residual terms

Ra,j(t), j ∈ {1, 2, 3}. Then, it shows that each of the four terms in bDR
a,t (δAT ) serves a

specific role in bounding in probability each of the termsmentioned above. In particular,
bODR
a,t (δAT ) controls |R̂ODR

a (t) − θa| (as already proven in Lemma SA-10), whilst each
b
[j]
a,t(δAT ) controls |Ra,j(t) for j ∈ {1, 2, 3}.

Lemma SA-11. Let Assumptions SA2, SA4, and SA5 hold, δ ∈ (0, 1), a ∈ A, and t ∈ [T ].
Then, ∣∣∣R̂DR

a (t)− θa

∣∣∣ ≥ bDR
a,t (δAT )

with probability at most δ.

[Proof]

Define the failure event

FDR(δ) :=

{
∃ a ∈ A, t ∈ [T ],

∣∣∣R̂DR
a (t)− θa

∣∣∣ ≥ bDR
a,t (δ)

}
.

When FDR(δ) occurs the optimistic doubly-robust reward estimator R̃DR
a (t) = R̂DR

a (t) +

bDR
a,t (t) does not cover the true mean reward θa. The next lemma shows that such an
event occurs with arbitrarily small probability.

Lemma SA-12. Let Assumptions SA2, SA4, and SA5 hold and δ ∈ (0, 1). Then,

P[FDR(δ)] ≤ δ.

[Proof]

Similarly to Lemma SA-8, the next lemma shows an implication of the event FDR(δ),
which turns out to be useful when bounding the regret.

Lemma SA-13. Let Assumptions SA2, SA4, and SA5 hold and δ ∈ (0, 1). With probability at
least 1− δ or, equivalently, under the event, FDR(δ) it holds that

∀ a ∈ A, t ∈ [T ], R̃DR
a (t, δ) = R̂DR

a (t) + bDR
a,t (δ) ≥ θa.

[Proof]
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Finally, the next theorem shows that the regret of the DR-UCB algorithm is nearly
optimal (up to logarithmic factors) and provides an upper bound that holds with high
probability uniformly over the horizon T and the class of bandits C2.

Theorem SA-3. Let Assumptions SA2, SA4, and SA5 hold with δ ∈ (0, 1) and δc ∈ (0, 1).
Then, for any horizon T ∈ N and bandit ν ∈ C2

RegretT (π
DR) ≤ 4σ̄

q

√
AT ln(2AT/δ) + õ(

√
T ) + AK

with probability 1− δ − δc.

[Proof]

SA2.3 Lower Bound on Minimax Regret

In this section, I show that the minimax regret

Regret⋆T (Cj) := inf
π∈Π

sup
ν∈Cj

RegretT (π; ν), j ∈ {1, 2}

is lower bounded by a constant times
√
T .

The proof follows standard arguments using Le Cam’s two-point method. Specifically,
I analyze the regret of an arbitrary policy π̃ ∈ Π on two carefully chosen instances
ν, ν ′ ∈ C, and show that

sup
ν̃∈C

RegretT (π̃; ν̃) ≥ max{RegretT (π̃, ν),RegretT (π̃, ν ′)} ≥ f(T )

for some function f(·). Since π̃ is arbitrary, this implies

Regret⋆T (C) ≥ f(T ).

To lower bound minimax regret over C1 and C2, I construct the same lower bound for
the Gaussian subclasses

Cgau1 := {(νa)a∈A : ν [R]
a = N (θa, 1), ν

[C]
a = Be(qa), qa ∈ (0, 1]} ⊂ C1

and

Cgau2 :=
{
(νa)a∈A : ν [R|X]

a = N (θa(X), 1), ν [C]
a = Be(qa), qa ∈ (0, 1],

and Assumption SA2 holds
}
⊂ C2.
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Because the supremum in the minimax regret is taken over a smaller class, the same
lower bound extends to C1 and C2. The argument mirrors that of Theorem 15.2 in
Lattimore and Szepesvári (2020), and the bounds are identical.

Theorem SA-4. Let T ∈ N, T ≥ A− 1 and consider the classes of bandits C1 and C2. Then,

Regret⋆T (Cj) = inf
π∈Π

sup
ν∈Cj

RegretT (π; ν) ≥
√
T (A− 1)

16
√
e

.

[Proof]
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SA3 Simulations

This section provides more details about the simulation study presented in the main
paper.

SA3.1 Setup

In this subsection, I suppress the dependence on a of each quantity and illustrate
the data-generating process for a generic action. Let Xj

iid∼ N(0, 1), j = 1, . . . , d, and
uj

iid∼ N(0, σ2
j ), j ∈ {C,R}. Define

C = 1

 d∑
ℓ=1

Xℓβℓ + uC > τ(q)

 , R = θ+
d∑

ℓ=1

Xℓβℓ+uR, β := (β1, . . . , βd)
⊤ ∈ R++,

where τ(q) : P[
∑d

ℓ=1Xℓβℓ + uC > τ(q)] = q. Note that

R ∼ N(θ, σ2
β + σ2

R), C ∼ Be(p), C ⊥⊥ R | X,

where σ2
β := ∥β∥22. Define W :=

∑d
ℓ=1Xℓ ∼ N(0, σ2

β) and note that

Cov(R,C) = E[RC]− E[R]E[C]

= θE[C] + E[WC] + E[uRC]− θE[C]

= E[WC] = P[C = 1]E[W | C = 1] = q · E[W | C = 1].

Define V := W + uC , the quantity above can be rewritten as

E[W | C = 1] = E[W | V > τ(q)].

Note that[
W

V

]
∼ N2

[0
0

]
,

[
σ2
β σ2

β

σ2
β σ2

β + σ2
C

] , ρ =
σ2
β

σβ

√
σ2
β + σ2

C

=
σβ√

σ2
β + σ2

C

,

thus, using the formulas for bivariate normal random variables,

W | V ∼ N
(
ρ2V, ρ2σ2

C

)
.

Hence,
E[W | V > τ(q)] = E[E[W | V ] | V > τ(q)] = ρ2 E[V | V > τ(q)].
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Using formulas for the truncated expectation of a normal distribution, one gets

E[V | V > τ(q)] = θV + σV

ϕ
(
τ̃(q)

)
1− Φ(τ̃(q))

=
√

σ2
β + σ2

C

ϕ
(
τ̃(q)

)
q

, τ̃(q) :=
τ(q)√
σ2
β + σ2

C

,

where the second equality also uses the fact that

1− Φ(τ̃(q)) = 1− P[Z ≤ τ(q)/σV ] = P[V ≥ τ(q)] = q.

Therefore

Cov(R,C) = q · E[W | C = 1]

= q · ρ2 · E[V | V > τ(q)]

= ρ2
√

σ2
β + σ2

C ϕ
(
τ̃(q)

)
,

and so

Corr(R,C) = ρ2

√
σ2
β + σ2

C

(σ2
β + σ2

R)q(1− q)
ϕ
(
τ̃(q)

)
= ρ

σβϕ
(
τ̃(q)

)√
(σ2

β + σ2
R)q(1− q)

. (3)

The above equationmakes it clear that once the unconditional probability of missingness
q and the variance of the noise terms uR and uC have been specified, it is possible to
search for β ∈ R++ such that Corr(R,C)matches a desired value.

SA3.2 Simulation Design

Throughout, I set A = 2, T = 5000, and d = 1. For each action and each simulation
scenario, I parametrize the data-generating process with σ2

a,R = 1, σ2
a,C = 2, θ1 = 0.5,

and θ2 = 1. The values of qa and β are scenario-specific and are made explicit in Table
SA-2.

Table SA-2: Parametrization of various simulation scenarios.

Missingness β (θ1, θ2) (θ̃1, θ̃2) (q1, q2)

1. ✗ 0 (0.5, 1) (0.5, 1) (1, 1)
2. C ⊥⊥ R 0 (0.5, 1) (0.5, 1) (0.25, 0.9)
3. C ⊥⊥ R | X s.t. Corr(C,R) = 0.2 (0.5, 1) (1.16, 1.08) (0.25, 0.9)

More in detail:

1. Scenario 1 is nomissing data, thus the data-generating process is that of a standard
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multi-armed bandit, which is akin to specifying β = 0 and q1 = q2 = 1;

2. Scenario 2 is reward-independent missingness, thus β = 0 and q1, q2 ∈ (0, 1);

3. Scenario 3 is reward-dependentmissingness, thusβ is selected so thatCorr(Ca, Ra) =

0.2 in Equation (3). In this case, the probability limit of the sample average of
observed rewards, R̂a(T ), is biased and different from θa.

Finally, the oracle versions of the UCB and DR-UCB algorithms are computed using
knowledge of the underlying data-generating process.

More in detail, under scenarios 1 and 2, πUCB
⋆ uses the following bonus term

b̌a,t(δ) = q1−δ
σa,R√

Na(t) + λ
,

whereas πUCB
⋆ under scenario 3 uses the following bonus term

ḃa,t(δ) = q1−δ

√
σa,R + ∥β∥22

Pa(t)
,

where q1−δ is the (1− δ)th quantile of a standard normal distribution.

Finally, nuisance estimation is conducted using an auxiliary sample, θ̂a are estimated
via least squares, and q̂a using a probit model.
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SA4 Proofs

SA4.1 Proof of Lemma SA-1

Proof. Fix δ ∈ (0, 1). First of all, note that by assumption we get

E
[
eκDk−κ2ν2

k/2 | Fk−1
]
≤ 1 a.s..

Let κ ∈ R \{0}, then by iteratively applying the law of iterated expectations

E
[
e
∑n

k=1(κDk−κ2ν2
k/2)

]
= E

[
e
∑n−1

k=1 (κDk−κ2ν2
k/2) E

[
eκDn−κ2ν2

n/2 | Fn−1

]]
≤ · · · ≤ 1.

Using Markov’s inequality

P
[
e
∑n

k=1(κDk−κ2ν2
k/2) ≥ 2δ−1

]
≤

E
[
e
∑n

k=1(κDk−κ2ν2
k/2)

]
2δ−1

≤ δ/2.

Finally

n∑
k=1

(κDk − κ2ν2k/2) ≥ log(2/δ) w.p. δ/2 =⇒
n∑

k=1

Dk ≤
κ

2

n∑
k=1

ν2k +
1

κ
log(2/δ) w.p. 1− δ/2.

The same logic can be applied to −Dk, by first noting that it is still a martingale difference sequence and
then absorbing the minus sign into the κ. The two statements together give us∣∣∣∣∣∣

n∑
k=1

Dk

∣∣∣∣∣∣ ≤ κ

2

n∑
k=1

ν2k +
1

κ
log(2/δ).

Minimizing the upper bound over κ ∈ R \{0},we get κ⋆ =
√

2 log(2/δ)(
∑n

k=1 ν
2
k)

−1 and plugging it in
the bound yields ∣∣∣∣∣∣

n∑
k=1

Dk

∣∣∣∣∣∣ ≤
√√√√2 log(2/δ)

n∑
k=1

ν2k ,

which holds with probability at least 1− δ. The last statement of the lemma follows immediately. ■

SA4.2 Proof of Lemma SA-2

Proof. By Proposition 2.5.2, part (iv) in Vershynin (2018) we know that a random variable Z ∼ sG(σ) if
and only if

E

exp( Z2

Cσ2

) ≤ 2,

for some C > 0. Therefore, in our case

E

exp( Z2

Cσ2

) = E

exp(X2 · Y 2

Cσ2

) (i)

≤ E

exp( X2

Cσ2

) (ii)

≤ 2,
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where (i) follows from the fact that Y 2 = Y ≤ 1 almost surely and X ∼ sG(σ). Thus, we conclude that
Z ∼ sG(σ)which was to be shown. ■

SA4.3 Proof of Lemma SA-3

Proof. First, I prove an auxiliary fact that will turn out to be useful: conditional sub-Gaussianity implies
unconditional sub-Gaussianity. As Y | X ∼ sG(σ), by definition of sub-Gaussianity one gets

∀λ ∈ R, E
[
eλ(Y−E[Y |X]) | X

]
≤ e

λ2σ2

2 a.s.

It follows that Y ∼ sG(σ). To see this, fix λ ∈ R and note that

E[eλ(Y−E[Y ])] = EY [e
λ(Y−EX [EY [Y |X]])] (LIE)

≤ EX,Y [e
λ(Y−EY [Y |X])] (Jensen’s inequality)

= EX [EY |X [eλ(Y−EY [Y |X])] | X]

≤ EX

[
e

λ2σ2

2

]
(Y | X ∼ sG(σ))

≤ e
λ2σ2

2 ,

which was claimed.1

Now, considerW := E[Y | X]− E[Y ]. Note that E[W ] = 0 and fix λ ∈ R. Then,

E[eλW ] = E[eλ(E[Y |X]−E[Y ])]

= E[eλE[Y |X]]e−λE[Y ]

≤ E[E[eλY | X]]e−λE[Y ] (Jensen’s inequality)

= E[eλY ]e−λE[Y ]

= E[eλ(Y−E[Y ])]

≤ e
λ2σ2

2 , (Y ∼ sG(σ))

where the last line follows because of the fact proven above. Thus, it follows that W ∼ sG(σ), which was
to be shown. ■

SA4.4 Proof of Lemma SA-4

Proof. The first result follows from the fact that

DKL(P,Q) =

∫
X

∫
Y
p(x, y) ln

p(x, y)

q(x, y)
dy dx

=

∫
X

∫
Y
p(x) p(y|x) ln p(x) p(y|x)

q(x) q(y|x)
dy dx

=

∫
X
p(x) ln

p(x)

q(x)
dx+

∫
X

∫
Y
p(x) p(y|x) ln p(y|x)

q(y|x)
dy dx

1Note that in principle one could make σ2 a random variable that is σ(X)-measurable and integrable,
and the result would also go through.
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= DKL(PX , QX) + EX∼PX

[
DKL(PY |X , QY |X)

]
.

Furthermore, if X ⊥⊥ Y , then PY |X = PY and QY |X = QY , thus

EX∼PX

[
DKL(PY |X , QY |X)

]
= DKL(PY , QY ),

which proves the second fact. ■

SA4.5 Proof of Lemma SA-5

Proof. Fix a ∈ A, t ∈ [T ], λ > 0, and δ ∈ (0, 1). First of all, for some λ > 0 note that

R̂UCB
a (t)− θa =

1

Na(t) + λ

t−1∑
ℓ=1

1[Aℓ = a]Ca,ℓRa,ℓ − θa

=
1

Na(t) + λ

t−1∑
ℓ=1

1[Aℓ = a]Ca,ℓ(Ra,ℓ − θa)−
λθa

Na(t) + λ
.

Define the auxiliary event

Ea,t(δ) :=
{∣∣∣R̂UCB

a (t)− θa

∣∣∣ ≥ bUCBa,t (δ/AT )

}
.

Via the triangular inequality, we have

Ea,t(δ) ⊆


∣∣∣∣∣∣ 1

Na(t) + λ

t−1∑
ℓ=1

1[Aℓ = a]Ca,ℓ(Ra,ℓ − θa)

∣∣∣∣∣∣+ λK

Na(t) + λ
≥ bUCBa,t (δ/AT )


=


∣∣∣∣∣∣ 1

Na(t) + λ

t−1∑
ℓ=1

1[Aℓ = a]Ca,ℓ(Ra,ℓ − θa)

∣∣∣∣∣∣+ λK

Na(t) + λ
≥ σ̄

q
λ

√
2 ln(2/δ)

Pa(t) + λ
+

λK

Na(t) + λ


=


∣∣∣∣∣∣ 1

Na(t) + λ

t−1∑
ℓ=1

1[Aℓ = a]Ca,ℓ(Ra,ℓ − θa)

∣∣∣∣∣∣ ≥ σ̄

q
λ

√
2 ln(2/δ)

Pa(t) + λ


⊆


∣∣∣∣∣∣ 1

Pa(t) + λ

t−1∑
ℓ=1

1[Aℓ = a]Ca,ℓ(Ra,ℓ − θa)

∣∣∣∣∣∣ ≥ σ̄

√
2 ln(2/δ)

Pa(t) + λ


=


∣∣∣∣∣∣
t−1∑
ℓ=1

1[Aℓ = a]Ca,ℓ(Ra,ℓ − θa)

∣∣∣∣∣∣ ≥ σ̄
√

2 ln(2/δ)(Pa(t) + λ)

 .

Then, we get

P
[
Ea,t(δ)

]
≤ P


∣∣∣∣∣∣
t−1∑
ℓ=1

1[Aℓ = a]Ca,ℓ(Ra,ℓ − θa)

∣∣∣∣∣∣ ≥ σ̄
√
2 ln(2/δ)(Pa(t) + λ)

 ≤ δ, (4)

where the last inequality follows from Freedman’s inequality (Lemma SA-1). To justify the use of
such inequality, I show that {Wa,ℓ}τℓ=1, where Wa,ℓ := 1[Aℓ = a]Ca,ℓ(Ra,ℓ − θa) is a martingale differ-

25



ence sequence for an appropriately defined filtration. Let such filtration be defined as {Fℓ}tℓ=0,Fℓ =

σ({(RAj ,j , CAj ,j), j = 1, . . . , ℓ}). It follows by construction that {Wa,ℓ}t−1
ℓ=1 is {Fℓ}t−1

ℓ=0-adapted and inte-
grable. Note that 1[Aℓ = a] is deterministic once we condition on Fℓ−1 as the UCB algorithm picks Aℓ

with all the information available at the beginning of round ℓ (see Protocol 1 and Algorithm 1). Therefore,
conditional on Fℓ−1 eitherWa,ℓ = 0 a.s. or Wa,ℓ = Ca,ℓ(Ra,ℓ − θa), hence, whenever {Aℓ ̸= a} realizes it
follows immediately that E[Wa,ℓ | Fℓ−1] = 0, whereas if {Aℓ = a} occurs, then

E[Wa,ℓ | Fℓ−1] = E[Ca,ℓ(Ra,ℓ − θa) | Fℓ−1] = E[Ca,ℓ(Ra,ℓ − θa)] = E[Ca,ℓ]E[(Ra,ℓ − θa)] = 0,

where the second equality follows because (Ca,ℓ, Ra,ℓ)
iid∼ νa and the third equality from Assumption

SA1. Finally, we have that

∀κ ∈ R \{0}, E
[
eκWa,ℓ | Fℓ−1

]
≤ eκ

2ν2
ℓ /2 a.s.

with

ν2ℓ = σ2
a1[Aℓ = a] =⇒

t−1∑
ℓ=1

ν2ℓ ≤ σ̄2Pa(t) < σ̄2(Pa(t) + λ) a.s.,

where the first inequality follows from the fact that: (i) 1[Aℓ = a] is Fℓ−1-measurable; (ii) Wa,ℓ | Fℓ−1 ∼
sG(σa) by Lemma SA-2 and the fact that (Ra,ℓ, Ca,ℓ)

iid∼ νa; and (iii) for a random variable Z and sigma-
algebra F , if Z | F ∼ sG(σ), then bZ | F ∼ sG(|b|σ) for a random variable b that is F-measurable. The
result in (4) follows from Lemma SA-1. ■

SA4.6 Proof of Lemma SA-6

Proof. Fix some δ ∈ (0, 1) to be chosen later and consider the failure event

FUCB(δ) =

{
∃ a ∈ A, t ∈ [T ] :

∣∣∣R̂UCB
a (t)− θa

∣∣∣ ≥ bUCBa,t (δ)

}
.

Then

P[FUCB(δ)] = P

⋃
a∈A

⋃
t∈[T ]

{∣∣∣R̂UCB
a (t)− θa

∣∣∣ ≥ bUCBa,t (δ)

}
≤
∑
a∈A

∑
t∈[T ]

P
[∣∣∣R̂UCB

a (t)− θa

∣∣∣ ≥ bUCBa,t (δ)

]
(union bound)

≤
∑
a∈A

∑
t∈[T ]

δ

AT
= δ, (Lemma SA-5)

which was to be shown. ■

SA4.7 Proof of Lemma SA-7

Proof. Fix a ∈ A, t, κa ∈ [T ], and δ ∈ (0, 1). Then

P

 κa∑
ℓ=1

1[Ca,ℓ = 1] ≤ (1− δ)qaκa

 ≤ exp

{
−δ2qaκa

2

}
, (5)
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where the inequality follows from the multiplicative version of a multiplicative Chernoff bound.

Pick δ ∈ (0, 1), then the probability of the missingness event is

P[FMIS(δ)] = P

⋃
a∈A

⋃
t∈[T ]

{
Na(t) ≤ (1− δ)qaPa(t), Pa(t) ≥ T a

}
≤
∑
a∈A

∑
t∈[T ]

P
[{

Na(t) ≤ (1− δ)qaPa(t), Pa(t) ≥ T a

}]
(union bound)

≤
∑
a∈A

∑
t∈[T ]

P

∃κa ∈ [T ] :


κa∑
ℓ=1

1[Ca,ℓ = 1] ≤ (1− δ)qaκa, κa ≥ T a


 (Assumption SA1)

≤
∑
a∈A

T∑
t=1

T∑
κa=Ta

P

 κa∑
ℓ=1

1[Ca,ℓ = 1] ≤ (1− δ)qaκa

 (union bound)

≤
∑
a∈A

T∑
t=1

T∑
κa=Ta

exp

{
−δ2qaκa

2

}
(by (5))

= T ·
∑
a∈A

T∑
κa=Ta

exp

{
−δ2qaκa

2

}
. (6)

Now, note that via an integral comparison, one gets

T∑
κa=Ta

exp

{
−δ2qaκa

2

}
≤

T∫
Ta−1

exp

{
−δ2qau

2

}
du

=

− 2

δ2qa
exp

{
−δ2qau

2

}T

Ta−1

=

− 2

δ2qa
exp

{
−δ2qau

2

}κa

Ta−1

(summands are negative and κa ≤ T )

≤ 2

δ2qa
exp

{
−δ2qa(T a − 1)

2

}

=
2

δ2qa
T−12δ2 . (T a = 1 + 24 ln(T )

qa
)

Therefore, using the above result in (6)

P[FMIS(δ)] ≤ T ·
∑
a∈A

2

δ2qa
T−12δ2 =

2

δ2
T 1−12δ2Acen,

where Acen =
∑

a∈A q−1
a , which was to be shown. ■

SA4.8 Proof of Lemma SA-8

Proof. Fix δ ∈ (0, 1). Note that

FUCB(δ) =

{
∀ a ∈ A, t ∈ [T ],

∣∣∣R̂UCB
a (t)− θa

∣∣∣ < bUCBa,t (δ)

}
,
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thus for all a ∈ A and t ∈ [T ] one has

R̃UCB
a (t, δ) = R̂UCB

a (t) + bUCBa,t (δ) (definition)

= θa + R̂UCB
a (t)− θa + bUCBa,t (δ)

> θa,

where the last inequality follows because under the event FUCB(δ) it occurs that

∀ a ∈ A, t ∈ [T ], −bUCBa,t (δ) < R̂UCB
a (t)− θa < bUCBa,t (δ),

where the first inequality implies

R̂UCB
a (t)− θa + bUCBa,t (δ) > 0.

■

SA4.9 Proof of Lemma SA-9

Proof. Fix δ ∈ (0, 1), if FMIS(δ) holds then for all a ∈ A, t ∈ [T ] we have that Na(t) > (1 − δ)qaPa(t).
Hence for each a ∈ A

(1− δ)

T∑
t=1

1

Na(t) + λ
≤

T∑
t=1

1

qaPa(t) +
λ

(1−δ)

(FMIS(δ) holds)

=
∑
a∈A

t−1∑
ℓ=1

1[Aℓ = a]
1

qa · ℓ+ λ
(1−δ)

(T =
∑

a∈A Pa(T ))

(i)

≤
∑
a∈A

t−1∫
0

1[Aℓ = a]
1

qa · u+ λ
(1−δ)

du

(ii)

≤
∑
a∈A

1

qa
ln

(
qaPa(T ) +

λ

(1− δ)

)
, (7)

where (i) follows from an integral comparison and (ii) by standard computations.

Now the goal is to construct a generic upper bound on
∑

a∈A
1
qa

ln(qaPa(T )+λ) that holds for any process
that causes missing data {qa}a∈A. To do so, one can solve the following constrained optimization problem

max
x∈RA

∑
a∈A

1

qa
ln(qaxa + α), s.to x ⪰ 0A, 1

⊤
Ax = T,

where α := λ/(1− δ). The problem above is a standard convex problem (see the water-filling problem in
Boyd and Vandenberghe, 2004, Example 5.2, p.245) and has the following KKT conditions

x⋆ ⪰ 0A, 1⊤
Ax

⋆ = T, µ⋆ ⪰ 0A, θ⋆ax
⋆
a = 0, a = 1, . . . , A

−1/ (α+ qax
⋆
a)− θ⋆a + ν⋆ = 0, a = 1, . . . , A,

whereµ⋆ are the Lagrangemultipliers for the inequality constraints and ν⋆ is themultiplier of the equality
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constraint. The unique solution of this problem is given by

x⋆
a =

1

qa

(
1

ν⋆
− λ

1− δ

)
, a = 1, . . . , A,

where ν⋆ is such that 1⊤
Ax = T and so ν⋆ =

(
λ

1−δ + T
Acen

)−1

giving us

x⋆
a =

T

qaAcen

, a = 1, . . . , A,

which yields a maximum value of (7) equal to

Acen ln

(
T

Acen

+
λ

1− δ

)
.

A similar logic can be used to show that

T∑
t=1

1√
Na(t) + λ

≤ Acen√
1− δ

√
T

Acen

+
λ

1− δ
.

■

SA4.10 Proof of Theorem SA-1

Proof. Define the good event G(δ1, δ2) = FUCB(δ1) ∩ FMIS(δ2) for some δ1, δ2 ∈ (0, 1) to be chosen later
and consider the regret of the UCB algorithm. Recall that under the UCB policy, the action at round t is
chosen as At := argmaxa∈A R̃UCB

a (t, δ). Note that

RegretT (π
UCB) =

T∑
t=1

(
θ − θAt

)
=

T∑
t=1

∆t,

with ∆t := θ − θAt
is the sub-optimality gap at time t. Furthermore, let ∆t(E) := Eν [Ra⋆,t − RAt,t | E ]

denote the sub-optimality gap conditional on the event E .

First of all, via Lemma SA-6, Lemma SA-7, and a union bound we get

P[G(δ1, δ2)] ≥ 1− δ1 −
2

δ22
AcenT

1−12δ22 . (8)

Assume G(δ1, δ2) holds, then

∆t(G(δ1, δ2)) = θ − θAt

≤ R̃a⋆(t, δ1)− θAt (Lemma SA-8)

≤ R̃At(t, δ1)− θAt (by UCB, At := argmaxa∈A R̃a(t, δ1))

= R̂At
(t)− θAt

+ bUCBAt,t(δ1) (definition of R̃a(t, δ1))

≤ 2bUCBAt,t(δ1). (FUCB(δ1) holds)
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Define λ̃ := λ
1−δ2

. Then, using the result above and the fact that λ > 0

T∑
t=1

∆t(G(δ1, δ2)) ≤
2σ̄

q
λ

√
2 ln(2AT/δ1)

T∑
t=1

1√
PAt

(t)
+ 2λK

T∑
t=1

1

NAt
(t) + λ

≤ 2σ̄

q
λ

√
2 ln(2AT/δ1)

T∑
t=1

1√
PAt(t)

+ 2AcenKλ̃ ln

(
T

Acen

+ λ̃

)
(Lemma SA-9)

=
2σ̄

q
λ

√
2 ln(2AT/δ1)

∑
a∈A

t−1∑
ℓ=1

1[Aℓ = a]
1√
ℓ
+ 2AcenKλ̃ ln

(
T

Acen

+ λ̃

)
≤ 4σ̄

q
λ

√
2 ln(2AT/δ1)

∑
a∈A

√
Pa(T ) + 2AcenKλ̃ ln

(
T

Acen

+ λ̃

)
(
∑k

j=1
1√
j
≤ 2
√
k )

≤ 4σ̄

q
λ

√
2 ln(2AT/δ1)

√∑
a∈A

1 ·
∑
a∈A

Pa(T ) + 2AcenKλ̃ ln

(
T

Acen

+ λ̃

)
(Cauchy-Schwarz)

≤ 4σ̄

q
λ

√
2AT ln(2AT/δ1) + 2AcenKλ̃ ln

(
T

Acen

+ λ̃

)
.

Therefore, by (8)

RegretT (π
UCB) ≤ 4σ̄

q
λ

√
2AT ln(2AT/δ1) + 2AcenKλ̃ ln

(
T

Acen

+ λ̃

)

with probability at least 1− δ1− 2
δ22
AcenT

1−12δ22 .Note that for δ2 =
√

1+κ
12 , one gets that 2

δ22
AcenT

1−12δ22 =

O(T−κ). Therefore, for κ > 0 and λ = o(T 1/2), it follows tht

RegretT (π
UCB) ≤ 4σ̄

q
λ

√
2AT ln(2AT/δ1) + o(

√
T ),

which was to be shown.

Finally, recall that each arm has been pulled once during the ’burn-in” period; thus, an additional factor
of K needs to be taken into account. ■

SA4.11 Proof of Lemma SA-10

Proof. Recall that

R̂ODR
a (t) =

1

Pa(t)

t−1∑
ℓ=1

1[Aℓ = a]

(
Ra,ℓCa,ℓ

qa(Xa,ℓ)
− θa(Xa,ℓ)

qa(Xa,ℓ)

(
Ca,ℓ − qa(Xa,ℓ)

))
.

Define the auxiliary event

Ea,t(δ) :=
{∣∣∣R̂ODR

a (t)− θa

∣∣∣ ≥ bODR
a,t (δ̃)

}
,

where

bODR
a,t (δ̃) = KODR

√
2 ln(2/δ)

Pa(t)
.
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Note that

R̂ODR
a (t) =

1

Pa(t)

t−1∑
ℓ=1

(Wa,ℓ + Va,ℓ),

with
Wa,ℓ := 1[Aℓ = a]

Ca,ℓ

qa(Xa,ℓ)
(Ra,ℓ − θa(Xa,ℓ)), Va,ℓ = 1[Aℓ = a](θa(Xa,ℓ)− θa).

Using the fact that {|X|+ |Y | ≥ a+ b} =⇒ {|X| ≥ a} ∪ {|Y | ≥ b} for any two random variables X,Y

and a, b ∈ R, one gets

Ea,t(δ) =


∣∣∣∣∣∣
t−1∑
ℓ=1

(Wa,ℓ + Va,ℓ)

∣∣∣∣∣∣ ≥ σ̄

q

√
2 ln(2/δ)Pa(t) + σ̄

√
2 ln(2/δ)Pa(t)


=


∣∣∣∣∣∣
t−1∑
ℓ=1

Wa,ℓ

∣∣∣∣∣∣ ≥ σ̄

q

√
2 ln(2/δ)Pa(t)


⋃

∣∣∣∣∣∣
t−1∑
ℓ=1

Va,ℓ

∣∣∣∣∣∣ ≥ σ̄
√
2 ln(2/δ)Pa(t)

 .

I now show that both {Wa,ℓ}t−1
ℓ=1 and {Va,ℓ}t−1

ℓ=1 are martingale difference sequences with respect to appro-
priately defined filtrations. Define the collections of sigma-algebras {Fℓ}tℓ=1,Fℓ = σ({Xa,ℓ, a ∈ A})⊗
σ({Zj , j = 1, . . . , ℓ− 1}) and {Gℓ}tℓ=1,Gℓ = σ({Zj , j = 1, . . . , ℓ− 1}), where Zj = {(Ra,j , Ca,j ,Xa,j), a ∈
A}. It follows by construction that {Va,ℓ}t−1

ℓ=1 is {Gℓ}
t−1
ℓ=0-adapted and integrable and {Wa,ℓ}t−1

ℓ=1 is {Fℓ}t−1
ℓ=0-

adapted and integrable. Note that 1[Aℓ = a] is deterministic conditionally on either Fℓ or Gℓ. Therefore,
conditional on Fℓ or on Gℓ, either {Aℓ ̸= a} realizes, and so Wa,ℓ = Va,ℓ = 0 almost surely and E[Va,ℓ |
Gℓ] = E[Wa,ℓ | Fℓ] = 0 follow immediately. If instead {Aℓ = a} realizes, then E[Va,ℓ | Gℓ] = E[Va,ℓ] = 0 by
the law of iterated expectations, whereas for E[Wa,ℓ|Fℓ

] two cases need to be considered.

First, suppose Assumption SA3(a) holds, i.e., qa(x) is the conditional probability of missingness. Then

E[Wa,ℓ | Fℓ] = E[1[Aℓ = a](Ca,ℓRa,ℓ − θa(Xa,ℓ)(Ca,ℓ − qa(Xa,ℓ)− θaqa(Xa,ℓ))/qa(Xa,ℓ) | Fℓ]

= E[(Ca,ℓRa,ℓ − θa(Xa,ℓ)(Ca,ℓ − qa(Xa,ℓ))/qa(Xa,ℓ) | Fℓ]− θa ({Aℓ = a} occurs)

= E[(Ca,ℓRa,ℓ − θa(Xa,ℓ)(Ca,ℓ − qa(Xa,ℓ))/qa(Xa,ℓ)]− θa ((Ra,ℓ, Ca,ℓ,Xa,ℓ)
iid∼ νa)

= E

E[Ca,ℓRa,ℓ

qa(Xa,ℓ)
| Xa,ℓ

]− θa + E

E[Ca,ℓ − qa(Xa,ℓ)

qa(Xa,ℓ)
| Xa,ℓ

]
(iterated expectations)

= E

E[Ca,ℓRa,ℓ

qa(Xa,ℓ)
| Xa,ℓ

]− θa (Assumption SA3(a))

= E[qa(Xa,ℓ)
−1 E[Ca,ℓ | Xa,ℓ]E[Ra,ℓ | Xa,ℓ]]− θa (Assumption SA2)

= E[E[Ra,ℓ | Xa,ℓ]]− θa = 0. (Assumption SA3(a))

If instead Assumption SA3(b) holds, i.e., θa(x) is the conditional mean reward, then

E[Wa,ℓ | Fℓ] = E[1[Aℓ = a](Ca,ℓRa,ℓ − θa(Xa,ℓ)(Ca,ℓ − qa(Xa,ℓ)− θaqa(Xa,ℓ))/qa(Xa,ℓ) | Fℓ]

= E[(Ca,ℓRa,ℓ − θa(Xa,ℓ)(Ca,ℓ − qa(Xa,ℓ))/qa(Xa,ℓ) | Fℓ]− θa ({Aℓ = a} occurs)

= E[(Ca,ℓRa,ℓ − θa(Xa,ℓ)(Ca,ℓ − qa(Xa,ℓ))/qa(Xa,ℓ)]− θa ((Ra,ℓ, Ca,ℓ,Xa,ℓ)
iid∼ νa)

= E[θa(Xa,ℓ)]− θa + E
[
qa(Xa,ℓ)

−1 E
[
Ca,ℓ(Ra,ℓ − θa(Xa,ℓ)) | Xa,ℓ

]]
(iterated expectations)
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= E
[
qa(Xa,ℓ)

−1 E
[
Ca,ℓ(Ra,ℓ − θa(Xa,ℓ)) | Xa,ℓ

]]
(Assumption SA3(b))

= E[qa(Xa,ℓ)
−1 E[Ca,ℓ | Xa,ℓ](E[Ra,ℓ | Xa,ℓ]− θa(Xa,ℓ))]− θa (Assumption SA2)

= 0. (Assumption SA3(b))

Moreover, it follows that

∀κ ∈ R, E
[
eκWa,ℓ | Fℓ

]
≤ eκ

2ν2
ℓ /2 a.s., with ν2ℓ =

σ2
a

q2
1[Aℓ = a] =⇒

t−1∑
ℓ=1

ν2ℓ ≤
σ̄2

q2
Pa(t) a.s.,

where the first inequality follows from the fact that: (i) 1[Aℓ = a] is {Zj , j = 1, . . . , ℓ}-measurable; (ii)
q̂a(Xa,ℓ)− qa(Xa,ℓ) is σ({Xa,ℓ, a ∈ A})⊗ σ(D)-measurable; (iii) by Assumption SA2 and Lemma SA-2,
Ca,ℓϵa,ℓ | Fℓ ∼ sG(σa); and (iv) for a random variable Z and sigma-algebra F , if Z | F ∼ sG(σ), then
bZ | F ∼ sG(|b|σ) for a random variable b that is F-measurable.

With a similar argument and using Lemma SA-3, it also follows that

∀κ ∈ R, E
[
eκVa,ℓ | Gℓ

]
≤ eκ

2ξ2ℓ/2 a.s., with ξ2ℓ = σ2
a1[Aℓ = a] =⇒

t−1∑
ℓ=1

ξ2ℓ ≤ σ̄2Pa(t) a.s..

Put differently, all the requirements of Freedman’s inequality (Lemma SA-1) are satisfied, thus for any
fixed a ∈ A and round t ∈ [T ]

P
[
Ea,t(δ)

]
≤ P


∣∣∣∣∣∣
t−1∑
ℓ=1

Wa,ℓ

∣∣∣∣∣∣ ≥ σ̄

q

√
2 ln(2/δ)Pa(t)

+ P


∣∣∣∣∣∣
t−1∑
ℓ=1

Va,ℓ

∣∣∣∣∣∣ ≥ σ̄
√

2 ln(2/δ)Pa(t)

 ≤ 2δ,

where the inequality follows from a union bound. Reparametrizing δ yields the desired result. ■

SA4.12 Proof of Theorem SA-2

Proof. The proof of this result is a particular case of the proof of Theorem SA-3, because

bDR
a,t(δ) = bODR

a,t (δ) + b
[1]
a,t(δ) + b

[2]
a,t(δ).

Thus, one can ignore the construction of the high-probability bounds on b
[1]
a,t(δ) and b

[2]
a,t(δ) and obtain a

proof for this theorem. ■

SA4.13 Proof of Lemma SA-11

Proof. Before getting started with the actual proof, it is useful to think of the data-generating process as

Ra = θ⋆a(Xa) + ϵa, Ca = q⋆a(Xa) + ξa, ∀ a ∈ A.

Note that the two equations above are definitional and do not impose conditions other than Assumption
SA2 on the data-generating process. Furthermore, by Assumption SA2 it follows that ϵa | Xa ∼ sG(σa)
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and ξa | Xa ∈ [−1, 1] a.s., and so

ϵa | Xa ∼ sG(σa), ξa | Xa ∼ sG(1), ∀ a ∈ A.

Fix a ∈ A, t ∈ [T ], δ ∈ (0, 1), and let δ̃ := ATδ. Consider the bonus term

bDR
a,t(δ) = bODR

a,t (δ) + b
[1]
a,t(δ) + b

[2]
a,t(δ) + b

[3]
a,t(δ),

where

bODR
a,t (δ) = KODR

√
2 ln(2AT/δ)

Pa(t)
, b

[1]
a,t(δ) :=

σ̄

q2

√
2 ln(2AT/δ)

Pa(t)
Errt(q̂a),

b
[2]
a,t(δ) :=

1

q

√
2 ln(2AT/δ)

Pa(t)
Errt(θ̂a), b

[3]
a,t(δ) = Errt(θ̂a)Errt(q̂a),

with

Errt(θ̂a) :=

√√√√ 1

Pa(t)

t−1∑
ℓ=1

1[Aℓ = a](θ̂a(Xa,ℓ)− θa(Xa,ℓ))2 , Errt(q̂a) :=

√√√√ 1

Pa(t)

t−1∑
ℓ=1

1[Aℓ = a](q̂a(Xa,ℓ)− qa(Xa,ℓ))2 .

Consider the following decomposition:

R̂DR
a (t)− θa =

1

Pa(t)

t−1∑
ℓ=1

1[Aℓ = a]

(
Ca,ℓ(Ra,ℓ − θ̂a(Xa,ℓ))

q̂a(Xa,ℓ)
+ θ̂a(Xa,ℓ)

)
− θa

=
1

Pa(t)

t−1∑
ℓ=1

1[Aℓ = a]

(
Ca,ℓ(Ra,ℓ − θa(Xa,ℓ))

qa(Xa,ℓ)
+ θa(Xa,ℓ)

)
− θa (:= Ra,IF(t))

+
1

Pa(t)

t−1∑
ℓ=1

1[Aℓ = a]
Ca,ℓ(Ra,ℓ − θa(Xa,ℓ))

q̂a(Xa,ℓ)qa(Xa,ℓ)

(
qa(Xa,ℓ)− q̂a(Xa,ℓ)

)
(:= Ra,1(t))

+
1

Pa(t)

t−1∑
ℓ=1

1[Aℓ = a]
(
θ̂a(Xa,ℓ)− θa(Xa,ℓ)

)(qa(Xa,ℓ)− Ca,ℓ

q̂a(Xa,ℓ)

)
. (:= Ra,2(t))

+
1

Pa(t)

t−1∑
ℓ=1

1[Aℓ = a]
(
θ̂a(Xa,ℓ)− θa(Xa,ℓ)

)(qa(Xa,ℓ)− q̂a(Xa,ℓ)

q̂a(Xa,ℓ)

)
. (:= Ra,3(t))

First, Assumptions SA4 and SA5(b) ensure all quantities are well defined as qa and q̂a are bounded away
from zero. Then, note that

P
[∣∣∣R̂DR

a (t)− θa

∣∣∣ ≥ bDR
a,t(δ̃)

]
(1)

≤ P
[
|Ra,IF(t)|+ |Ra,1(t)|+ |Ra,2(t)|+ |Ra,3(t)| ≥ bODR

a,t (δ̃) + b
[1]
a,t(δ̃) + b

[2]
a,t(δ̃) + b

[3]
a,t(δ̃)

]
(2)

≤ P
[
|Ra,IF(t)| ≥ bODR

a,t (δ̃)
]
+ P

[
|Ra,1(t)| ≥ b

[1]
a,t(δ̃)

]
+ P

[
|Ra,2(t)| ≥ b

[2]
a,t(δ̃)

]
+ P

[
|Ra,3(t)| ≥ b

[3]
a,t(δ̃)

]
,

(9)

where (1) follows from the triangle inequality, (2) follows from the fact that {|X|+ |Y | ≥ a+ b} =⇒
{|X| ≥ a} ∪ {|Y | ≥ b} for any two random variables X,Y and a, b ∈ R. Therefore, the goal is to provide
bounds for the three terms in (9). Towards this goal, recall that we defined ϵa,ℓ := Ra,ℓ − θa(Xa,ℓ) and
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ξa,ℓ := Ca,ℓ − qa(Xa,ℓ), ξa ∈ [−1, 1] a.s., and, by the law of iterated expectations, E[ϵa,ℓ] = 0 = E[ξa,ℓ] for
all ℓ ∈ [T ] and a ∈ A.

Bound on P[|Ra,IF(t)| ≥ b
[ODR]
a,t (δ̃)].

Note that Assumption SA4 is just Assumption SA3 where qa(·) and θa(·) are the probability limits of the
nuisance estimators. Thus, it follows immediately from Lemma SA-10 that

P
[
|Ra,IF(t)| ≥ bODR

a,t (δ̃)
]
≤ δ. (10)

Bound on P[|Ra,1(t)| ≥ b
[1]
a,t(δ̃)].

Note that

{
|Ra,1(t)| ≥ b

[1]
a,t(δ̃)

}
=


∣∣∣∣∣∣ 1

Pa(t)

t−1∑
ℓ=1

1[Aℓ = a]
Ca,ℓ(Ra,ℓ − θa(Xa,ℓ))

q̂a(Xa,ℓ)qa(Xa,ℓ)

(
qa(Xa,ℓ)− q̂a(Xa,ℓ)

)∣∣∣∣∣∣ ≥ σ̄

q2

√
2 ln(2/δ)

Pa(t)
Errt(q̂a)


⊆

 1

q2

∣∣∣∣∣∣ 1

Pa(t)

t−1∑
ℓ=1

1[Aℓ = a]Ca,ℓϵa,ℓ
(
qa(Xa,ℓ)− q̂a(Xa,ℓ)

)∣∣∣∣∣∣ ≥ σ̄

q2

√
2 ln(2/δ)

Pa(t)
Errt(q̂a)


=


∣∣∣∣∣∣
t−1∑
ℓ=1

1[Aℓ = a]Ca,ℓϵa,ℓ
(
qa(Xa,ℓ)− q̂a(Xa,ℓ)

)∣∣∣∣∣∣ ≥ σ̄
√

2 ln(2/δ)Pa(t) Errt(q̂a)

 ,

where the inclusion follows from Assumptions SA4 and SA5(b).

Denote with D the data (i.e., collection of random variables) used to estimate {q̂a, θ̂a}a∈A such that
Assumption SA5(c) is satisfied and define Wa,ℓ := 1[Aℓ = a]Ca,ℓϵa,ℓ(qa(Xa,ℓ) − q̂a(Xa,ℓ)) and the
collection of sigma-algebras {Fℓ}tℓ=1,Fℓ = σ({Xa,ℓ, a ∈ A}) ⊗ σ({Zj , j = 1, . . . , ℓ − 1})⊗ σ(D), where
Zj = {(Ra,j , Ca,j ,Xa,j), a ∈ A}. It follows by construction that {Wa,ℓ}t−1

ℓ=1 is {Fℓ}t−1
ℓ=1-adapted and

integrable. Again, if {Aℓ ̸= a} occurs, then E[Wa,ℓ | Fℓ] = 0 a.s. follows immediately. If {Aℓ = a} realizes,
note that

E[Wa,ℓ | Fℓ−1] = E[Ca,ℓϵa,ℓ(qa(Xa,ℓ)− q̂a(Xa,ℓ)) | Fℓ] ({Aℓ = a} occurs)

= E[Ca,ℓϵa,ℓ | Fℓ](qa(Xa,ℓ)− q̂a(Xa,ℓ)) (Assumption SA5(d))

= E[Ca,ℓϵa,ℓ | Xa,ℓ](qa(Xa,ℓ)− q̂a(Xa,ℓ)) ((Ca,ℓ, ϵa,ℓ) | Xa,ℓ are i.i.d.)

= E[Ca,ℓ | Xa,ℓ]E[ϵa,ℓ | Xa,ℓ](qa(Xa,ℓ)− q̂a(Xa,ℓ)) (Assumption SA2)

= 0. (definition of ϵa,ℓ)

Moreover, for κ ∈ R we have

∀κ ∈ R, E
[
eκWa,ℓ | Fℓ

]
≤ eκ

2ν2
ℓ /2 a.s.,

with

ν2ℓ = σ̄2
1[Aℓ = a](q̂a(Xa,ℓ)− qa(Xa,ℓ))

2 =⇒
t−1∑
ℓ=1

ν2ℓ ≤ σ̄2Pa(t)Errt(q̂a)
2 a.s.,

where the first inequality follows from the fact that: (i) 1[Aℓ = a] is σ({Zj , j = 1, . . . , ℓ− 1})-measurable;
(ii) q̂a(Xa,ℓ) − qa(Xa,ℓ) is σ({Xa,ℓ, a ∈ A}) ⊗ σ(D)-measurable; (iii) by Assumption SA2 and Lemma
SA-2, Ca,ℓϵa,ℓ | Fℓ ∼ sG(σa); and (iv) for a random variable Z and sigma-algebra F , if Z | F ∼ sG(σ),
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then bZ | F ∼ sG(|b|σ) for a random variable b that is F-measurable.

All the conditions of Freedman’s inequality (Lemma SA-1) are satisfied by {Wa,ℓ}tℓ=1 and get

P


∣∣∣∣∣∣
t−1∑
ℓ=1

1[Aℓ = a]Ca,ℓϵa,ℓ
(
qa(Xa,ℓ)− q̂a(Xa,ℓ)

)∣∣∣∣∣∣ ≥ σ̄
√

2 ln(2/δ)Pa(t) Errt(q̂a)

 ≤ δ,

which implies

P[|Ra,1(t)| ≥ b
[1]
a,t(δ̃)] ≤ δ. (11)

Bound on P[|Ra,2(t)| ≥ b
[2]
a,t(δ)].

Regarding Ra,2(t), note that

|Ra,2(t)| =

∣∣∣∣∣∣ 1

Pa(t)

t−1∑
ℓ=1

1[Aℓ = a]
(
θ̂a(Xa,ℓ)− θa(Xa,ℓ)

)(qa(Xa,ℓ)− Ca,ℓ

q̂a(Xa,ℓ)

)∣∣∣∣∣∣
≤ 1

q

∣∣∣∣∣∣ 1

Pa(t)

t−1∑
ℓ=1

1[Aℓ = a]
(
θ̂a(Xa,ℓ)− θa(Xa,ℓ)

)
ξa,ℓ

∣∣∣∣∣∣ .
Using a symmetric argument to the one used above to bound Ra,1(t) in probability, one gets

P[|Ra,2(t)| ≥ b
[2]
a,t(δ̃)] = P

[
|Ra,2(t)| ≥

1

q

√
2 ln(2/δ)

Errt(θ̂a)

Pa(t)

]
≤ δ. (12)

Bound on P[|Ra,3(t)| ≥ b
[3]
a,t(δ)].

By the Cauchy-Schwarz inequality and Assumption SA5(b)

|Ra,3(t)| ≤

√√√√ 1

Pa(t)

t−1∑
ℓ=1

1[Aℓ = a](θ̂a(Xa,ℓ)− θa(Xa,ℓ))2 ·

√√√√ 1

Pa(t)

t−1∑
ℓ=1

1[Aℓ = a](q̂a(Xa,ℓ)− qa(Xa,ℓ))2

=
1

q
Errt(θ̂a)Errt(q̂a),

almost surely, which yields

P[|Ra,3(t)| ≥ b
[3]
a,t(δ̃)] ≤ δ. (13)

Final bound.

Finally, by using (10), (11), (12), and (13) in (9), it follows that

P
[∣∣∣R̂DR

a (t)− θa

∣∣∣ ≥ bDR
a,t(δ̃)

]
≤ 3δ.

Reparametrizing δ yields the desired result. ■
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SA4.14 Proof of Lemma SA-12

Proof. Fix some δ ∈ (0, 1) and consider the failure event

FDR(δ) =

{
∃ a ∈ A, t ∈ [T ] :

∣∣∣R̂DR
a (t)− θa

∣∣∣ ≥ bDR
a,t(δ)

}
.

Then,

P[FDR(δ)] = P

⋃
a∈A

⋃
t∈[T ]

{∣∣∣R̂DR
a (t)− θa

∣∣∣ ≥ bDR
a,t(δ)

}
≤
∑
a∈A

∑
t∈[T ]

P
[∣∣∣R̂DR

a (t)− θa

∣∣∣ ≥ bDR
a,t(δ)

]
(union bound)

≤ δ

AT
·AT = δ. (Lemma SA-11)

■

SA4.15 Proof of Lemma SA-13

Proof. Fix δ ∈ (0, 1). Note that

FDR(δ) =

{
∀ a ∈ A, t ∈ [T ],

∣∣∣R̂DR
a (t)− θa

∣∣∣ ≤ bDR
a,t(δ)

}
,

thus for all a ∈ A and t ∈ [T ]we have

R̃DR
a,t(t, δ) = R̂DR

a (t) + bDR
a,t(δ)

= θa + R̂DR
a (t)− θa + bDR

a,t(δ)︸ ︷︷ ︸
≥0

≥ θa,

where the last line follows because under FDR(δ)we have

∀ a ∈ A, t ∈ [T ], −bDR
a,t(δ) ≤ R̂DR

a (t)− θa ≤ bDR
a,t(δ),

where the first inequality gives us
R̂DR

a (t)− θa + bDR
a,t(δ) ≥ 0.

■

SA4.16 Proof of Theorem SA-3

Proof. Define the good event G(δ) = FDR(δ) for some δ ∈ (0, 1) to be chosen later. Consider the regret of
the DR-UCB algorithm that uses R̂DR

a (t) as an estimator for mean rewards. Moreover, recall that under
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the UCB policy, the action at round t is chosen as At := argmaxa∈A R̃DR
a (t, δ). Note that

RegretT (π
DR) =

T∑
t=1

(
θ − θAt

)
=

T∑
t=1

∆t,

with ∆t := θ − θAt is the sub-optimality gap at time t. Furthermore, let ∆t(E) := Eν [Ra⋆,t − RAt,t | E ]
denote the sub-optimality gap conditional on the event E .

Suppose G(δ) holds. By Lemma SA-12, this occurs with probability at least 1− δ. Then,

∆t(G(δ)) = θ − θAt

≤ R̃DR
a⋆ (t, δ)− θAt

(Lemma SA-13)

≤ R̃DR
At

(t, δ)− θAt
(by DR-UCB, At := argmaxa∈A R̃DR

a (t, δ))

= R̂DR
At

(t)− θAt
+ bDR

At,t(δ) (definition of R̃DR
At

(t, δ))

≤ 2bDR
At,t(δ). (Lemma SA-12)

Therefore, decomposing bDR
At,t

(δ) and summing over rounds

2

T∑
t=1

bODR
At,t (δ) =

2σ̄

q

√
ln(2AT/δ)

T∑
t=1

1√
PAt

(t)
,

=
2σ̄

q

√
2 ln(2AT/δ)

∑
a∈A

Pa(T )∑
ℓ=1

1√
ℓ

≤ 4σ̄

q

√
2 ln(2AT/δ)

∑
a∈A

√
Pa(T ) (

∑k
j=1

1√
j
≤ 2
√
k )

≤ 4σ̄

q

√
2 ln(2AT/δ)

√∑
a∈A

1 ·
∑
a∈A

Pa(T ) (Cauchy-Schwarz)

≤ 4σ̄

q

√
2AT ln(2AT/δ) .

Moreover, under Assumption SA5(d) with δc ∈ (0, 1), it follows that cq(Pa(t)) ≲ Pa(t)
−αq for some

αq > 0. Then,

2

T∑
t=1

b
[1]
At,t

(δ) =
2σ̄

q2

√
2 ln(2AT/δ)

T∑
t=1

√
ErrPAt (t)

(q̂At)

PAt(t)

≤ 2σ̄

q2

√
2 ln(2AT/δ)

T∑
t=1

cqt√
PAt(t)

≲
2σ̄

q2

√
2 ln(2AT/δ)

T∑
t=1

1

PAt(t)
1/2+αq

= õ
(√

T
)
,

with probability 1 − δ − δc and where the last line follows from a comparison with
∑T

t=1 PAt
(t)−1/2.

Similarly, using Assumption SA5(d) again, for some αθ > 0 and α > 1/2 we get

2

T∑
t=1

b
[2]
At,t

(δ) ≤ 2

T∑
t=1

Errt(θ̂a)Errt(θ̂a) +
2

q

√
2 ln(2AT/δ)

T∑
t=1

Errt(q̂a)√
Pa(t)
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≲ T 1−α +
2

q

√
2 ln(2AT/δ)

T∑
t=1

1

PAt(t)
1/2+αθ

= õ
(√

T
)

with probability 1− δ − δc. Thus, one can conclude that

RegretT (π
DR) =

T∑
t=1

∆t(G(δ)) ≤
4σ̄

q

√
AT ln(2AT/δ) + õ(

√
T )

with probability 1− δ− δc. Finally, recall that each arm has been pulled once during the “burn-in” period;
thus, an additional factor of Aθ needs to be taken into account. ■

SA4.17 Proof of Theorem SA-4

Proof. Fix T ∈ N and choose a generic policy π ∈ Π and two Gaussian-Bernoulli bandits ν and ν′ in Cgau2 ,

defined as follows:

1. ∀ a ∈ A, ν = {νa}a∈A is such that ν[R]
a = N(θa, 1)with θa = ∆1[a = 1] and ν

[C]
a = Be(qa), qa ∈ [q, 1];

2. ∀ a ∈ A, ν′ = {ν′a}a∈A is such that ν[X]
a = ν

′[X]
a , ν

′[R|X]
a = N(θ′a, 1) with θ′a = ∆1[a = 1] + 2∆1[a =

i⋆], ν
′[C|X]
a = Be(qa) and where

i⋆ := argmin
a∈A\{1}

Eν [Pa(T )].

The rationale for choosing these two bandits is that they are sufficiently hard to distinguish from each
other, but they induce different strategies. To summarize, the two mean vectors are

(∆, 0, . . . , 0) and (∆, 0, . . . , 0, 2∆, 0, . . . , 0).

This strategy exactly matches what an adversarial nature would play, making it the natural benchmark
when focusing on minimax regret. Furthermore, by the definition of i⋆ and the fact that Pa(T ) ≥ 0 almost
surely for each a ∈ A∑

a∈A
Eν [Pa(T )] = Eν [P1(T )] +

∑
a∈A\{1}

Eν [Pa(T )] ≥
∑

a∈A\{1}

Eν [Pa(T )] ≥ (A− 1)Eν [Pi⋆(T )].

Then, because
∑

a∈A Eν [Pa(T )] = T it follows that

Eν [Pi⋆(T )] ≤
T

A− 1
. (14)

By the classical decomposition of regret see Lemma 4.2 in Lattimore and Szepesvári (2020), it follows
that

RegretT (ν) =
∑
a∈A

∆a Eν [Pa(T )] = ∆
∑

a∈A\{1}

Eν [Pa(T )] = ∆(T − Eν [P1(T )])

and

RegretT (ν
′) =

∑
a∈A

∆a Eν′ [Pa(T )] = ∆Eν′ [P1(T )] + 2∆
∑

a∈A\{1,i⋆}

Eν′ [Pa(T )] ≥ ∆Eν′ [P1(T )].
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Then, define the event A := {P1(T ) ≤ T/2} and note that

RegretT (ν) = ∆Eν [T − P1(T )] ≥ ∆Eν [T − P1(T ) | A]Pν [A] ≥
∆T

2
Pν [P1(T ) ≤ T/2]. (15)

Similarly,

RegretT (ν
′) = ∆Eν′ [P1(T )] ≥ ∆Eν′ [P1(T ) | A]Pν′ [A] ≥ ∆T

2
Pν′ [P1(T ) > T/2]. (16)

Thus, it follows that

RegretT (ν) + RegretT (ν
′) ≥ ∆T

2

(
Pν [P1(T ) ≤ T/2] + Pν′ [P1(T ) > T/2]

)
((15) and (16))

≥ ∆T

4
exp

{
−DKL(Pν ,Pν′)

}
(Bretagnole-Huber inequality)

=
∆T

4
exp

−∑
a∈A

Eν [Pa(T )]DKL(ν, ν
′)

 , (Lemma 15.1, LS)

where LS is short for Lattimore and Szepesvári (2020). Then, by Lemma SA-4 and the fact that ν and ν′

differ only in action i⋆

RegretT (ν) + RegretT (ν
′) ≥ ∆T

4
exp

{
−Eν [Pi⋆(T )]DKL(νi⋆ , ν

′
i⋆)
}

In both cases, ν, ν′ ∈ Cgau2 , the Kullback-Leibler divergence between νi⋆ and ν′i⋆ is 2∆2/2. Hence,

RegretT (ν) + RegretT (ν
′) ≥ ∆T

4
exp

{
−Eν [Pi⋆(T )]

2∆2

2

}

≥ ∆T

4
exp

{
− 2T∆2

2(K − 1)

}
((14))

≥ T

4

√
A− 1

4T
e−1/2 (∆ =

√
A−1
4T ≤ 1

2)

=

√
T (A− 1)

8
√
e

.

Finally, note that

sup
ν̃∈Cj

RegretT (π; ν̃) ≥ max{RegretT (π; ν);RegretT (π; ν′)} ≥
1

2

(
RegretT (ν) + RegretT (ν

′)
)
≥
√
T (A− 1)

16
√
e

.

Because π ∈ Π was generically chosen, it follows that

Regret⋆T (C
gau
2 ) = inf

π∈Π
sup

ν∈Cgau
2

RegretT (π; ν) ≥
√
T (A− 1)

16
√
e

,

which was to be shown. The proof for Cgau1 is identical. ■
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