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Abstract

This paper investigates the challenges of optimal online policy learning under miss-
ing data. State-of-the-art algorithms implicitly assume that rewards are always
observable. I show that when rewards are missing at random, the Upper Confi-
dence Bound (UCB) algorithm maintains optimal regret bounds; however, it selects
suboptimal policies with high probability as soon as this assumption is relaxed. To
overcome this limitation, I introduce a fully nonparametric algorithm—Doubly-
Robust Upper Confidence Bound (DR-UCB)—which explicitly models the form of
missingness through observable covariates and achieves a nearly-optimal worst-case
regret rate of Õ(

√
T ). To prove this result, I derive high-probability bounds for a

class of doubly-robust estimators that hold under broad dependence structures.
Simulation results closely match the theoretical predictions, validating the proposed
framework.

Keywords: sequential decision problems, double robustness, missing data
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and its targets. Such rich online datasets naturally give rise to sequential decision prob-

lems in which a decision-maker continuously re-optimizes the implemented policy as

more information is gathered. Historically, these decision problems have been mod-

eled as multi-armed bandits (Thompson, 1933; Wald, 1947; Robbins, 1952), in which a

decision-maker interactively learns the best policy (action) among a set of alternatives

by trying out options and observing a signal (feedback or reward) from the environment.

Naturally, the success of these strategies requires the decision-maker to be able to

observe some feedback following each action and, thus, to assess the extent to which

the chosen action had the intended impact. However, in many real-world settings, the

environment’s response to a given policy might not always be observable, making it

harder to gauge the true efficacy of an intervention. If this particular form of missing

data is correlated with the outcome of interest, it introduces sampling bias (Horvitz and

Thompson, 1952) and complicates the identification of optimal decision rules. Despite

that, standard bandit algorithms typically rely on the assumption that rewards are

always observed upon each action.

To make the problem more concrete, consider the case of a digital platform that exper-

iments with user engagement strategies—such as personalized push notifications or

in-app promotions—and gauges satisfaction via voluntary review prompts. While some

users may readily submit reviews, a non-trivial fraction will opt out. Suppose the prob-

ability of response itself depends on satisfaction. In that case, reviews are observed only

for a particular subpopulation, which may differ from the target one in many aspects,

thus potentially inducing a suboptimal policy choice. Other real-life examples include

a firm implementing different hiring strategies and a graduate admission committee

experimenting with alternative types of offers.

In this paper, I first show that the popular UCB algorithm (Auer, Cesa-Bianchi and

Fischer, 2002) maintains its optimal (up to logarithmic factor) worst-case regret rate of

Õ(
√
T )whenever the process that causes missing data is independent from rewards.

Intuitively, in this case, rewards are missing completely at random (Rubin, 1976), hence
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reward-independent missingness only makes the learning process slower, without

invalidating it. Nevertheless, this independence assumption is implausible in most

practical scenarios where reward observability directly depends on the feedback itself.

For example, customer satisfaction is typically surveyed only for extreme types, and

different job postings attract different potential employees.

Whenever the process that causes missing data is reward-dependent, I show that the

standard UCB algorithm may select suboptimal policies with probability approaching

one as the number of trials grows. By explicitly modeling the dependence between

rewards and the selection process through observable covariates, I develop a theoreti-

cally grounded, fully nonparametric procedure for sequential decision problems with

missing feedback. The proposed algorithm achieves a worst-case regret rate of order

Õ(
√
T ), which I show to coincide (up to logarithmic factors) with the rate of a novel

lower bound on the minimax regret for the class of bandits with reward-dependent

missingness. Additionally, the proposed method is doubly robust in the sense that only

one among the conditional expectation of rewards and the conditional probability of

missingness needs to be correctly specified for the algorithm to function properly. In

this spirit, the algorithm’s name is Doubly-Robust Upper Confidence Bound (DR-UCB).

Finally, to the best of my knowledge, this paper provides the first high-probability

bounds for a doubly-robust estimator under very general conditions. Specifically, the

high-probability bounds derived throughout rely on the theory formartingale difference

sequences (Freedman, 1975), and so allow for very general dependence structures in

the data. This was necessary in this setting due to the technical challenges brought by

the sequential nature of the problem.

1.1 Related Work

Sequential decision-making problems under uncertainty have been extensively studied

in economics, statistics, and computer science after the seminal work of Wald (1947)

and have mostly focused on the design of optimal strategies and algorithms. Recent
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advances have particularly emphasized the role of adaptive algorithms that sequentially

learn and adjust to uncertain environments, leading to a proliferation of approaches that

efficiently balance exploration and exploitation; for a textbook introduction, see Bubeck

and Cesa-Bianchi (2012), Lattimore and Szepesvári (2020), and references therein.

This paper builds explicitly on the extensive literature studying the properties of theUCB

algorithm. The idea of being optimistic in the face of uncertainty first appeared in Lai

and Robbins (1985). Lai (1987) provided the first version of theUCB algorithm, whereas

the UCB algorithm analyzed here is closer to the UCB1 analyzed in Auer, Cesa-Bianchi

and Fischer (2002). UCB methods have been widely recognized for their effective-

ness in handling exploration-exploitation trade-offs, providing provable performance

guarantees and optimal regret bounds in multi-armed bandit frameworks.

The literature on multi-armed bandits with delayed feedback is also closely related to

this project. Delayed feedback poses significant challenges for standard UCB algorithms,

as the decision-maker is forced to take actions before she can receive any signal from the

environment she is interacting with. The closest predecessor of this work is probably

Lancewicki, Segal, Koren and Mansour (2021), where the authors provide problem-

specific regret bounds for the Successive Elimination algorithm when rewards are

bounded and delays are occasionally infinite and reward-dependent. Different from

them, here I propose distribution-free worst-case regret bounds for a novel version of

the UCB and allow rewards to be unbounded.

Finally, this paper intersects with the literature that relies on doubly-robust estimators

for different goals, such as handling missing data (Robins, Rotnitzky and Zhao, 1994;

Bang and Robins, 2005), estimating the causal impacts of policies (Cattaneo, 2010;

Farrell, 2015; Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey and Robins,

2018), or to learn optimal policies in offline (Athey andWager, 2021) and online settings

(Kallus, Mao, Wang and Zhou, 2022; Shen, Cai and Song, 2024).
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1.2 Organization of the Paper

The paper is organized as follows. Section 2 describes the problem and the algorithms

used throughout. Section 3 contains the main results and showcases the worst-case

regret properties of the classical UCB algorithm and DR-UCB in environments with

reward-independent (Section 3.1) and reward-dependent (Section 3.2) missingness.

Section 4 illustrates some simulation evidence. Section 5 concludes. The code repli-

cating the simulation study is available at https://github.com/filippopalomba/P_

2025_banditMissing.

1.3 Notation

For two positive sequences {an}n , {bn}n, I write an = O(bn) if ∃M ∈ R++ : an ≤ Mbn

for all large n, an = o(bn) if limn→∞ anb
−1
n = 0, an = Õ(bn) if ∃ k ∈ N, C ∈ R++ :

an = O(bn ln
k(Cn)) an ≲ bn if there exists a constant C ∈ R++ such that an ≤ Cbn

for all large n, and an ∼ bn if an/bn → 1 as n → ∞. For two sequences of random

variables {An}n , {Bn}n, I write An = oP(Bn) if ∀ ε ∈ R++, limn→∞ P[|AnB
−1
n | ≥ ε] = 0

and An = OP(Bn) if ∀ ε ∈ R++, ∃M,n0 ∈ R++ : P[|AnB
−1
n | > M ] < ε, for n > n0.

I denote a (possibly multivariate) Gaussian random variable with N(a,B), where a

denotes the mean and B the variance-covariance, with Be(p) a Bernoulli distribution

with p ∈ (0, 1] denoting the success probability, with sG(σ) a sub-Gaussian random

variable with proxy variance at most σ > 0, and with SG(σ) the space of sub-Gaussian

probability distribution with variance proxy at most σ > 0. A random variable X is

sub-Gaussian with parameter σ > 0 if ∀λ ∈ R,E[exp(λX)] ≤ exp(λ2σ2/2) and E[X] = 0

(Definition 5.1 in Lattimore and Szepesvári, 2020). If {Xt}∞t=1 is anF -adaptedmartingale

difference sequence with respect to some filtration F = {Ft}∞t=1, then it is understood

that Xt ∼ sG(σ2) requires ∀λ ∈ R,E[exp(λXt) | Ft] ≤ exp(λ2σ2/2) and E[Xt | Ft] = 0.

See also Table SA-1 in the supplemental appendix for a summary of the project-specific

notation.
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2 Problem Setup and Preliminaries

I start by describing a generic instance of a stochastic multi-armed bandit (henceforth,

MAB) with (possibly) missing rewards and the decision-maker that interacts with such

an environment.

Setting. A decision-maker faces a sequential decision problem over T ∈ N rounds in a

stochastic environment. At the beginning of each round t ∈ [T ], using all the information

available at that point, the decision-maker selects an action At ∈ A := {1, . . . , A}. Each

action a ∈ A is associated with a reward Ra ∈ R, Ra ∼ sG(σa), σa > 0, an indicator

for not being missing Ca ∈ {0, 1}, and some covariates Xa ∈ X ⊆ Rk, k ∈ N. All

random variables are independent across actions, i.e., (Ra, Ca,Xa) ⊥⊥ (Ra′ , Ca′ ,Xa′) for

a ̸= a′, a, a′ ∈ A. A stochastic MAB problem with missing rewards is defined as a

collection of random variables {(Ra,ℓ, Ca,ℓ,Xa,ℓ)}a∈A,ℓ∈[T ] where each (Ra,ℓ, Ca,ℓ,Xa,ℓ) is

a random draw from (Ra, Ca,Xa). The reward of action a ∈ A in round t ∈ [T ], denoted

with Ra,t, is observed only if Ca,t = 1. At this level of generality, the class of bandits

considered is

C :=
{
(νa)a∈A : ν [R]

a ∈ SG(σa), ν
[C]
a = Be(qa), qa ∈ (0, 1]

}
,

where ν [Y ]
a is the marginal distribution of Y ∈ {R,C}. Finally, I define σ̄ :=

√
maxa∈A σ2

a

and q = mina∈A qa.

Decision-maker. Each decision-maker is characterized by a policy that maps

{(Aℓ, RAℓ,ℓ, CAℓ,ℓ,X
⊤
Aℓ,ℓ

)}ℓ∈[t−1], the history up to the beginning of round t, to the space

of probability distributions over actions ∆(A). Denote the space of policies as

Π :=
{
π : π = {πt}t∈[T ], πt : (A× R×{0, 1} × X )t−1 → ∆(A)

}
.

I use interchangeably the words “decision-maker”, “algorithm”, and “policy” when

referring to a generic element π ∈ Π. Protocol 1 describes the interaction between a

decision-maker and a MAB with (possibly) missing feedback.
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Protocol 1 Multi-Armed Bandit with Missing Rewards
Consider a generic bandit ν ∈ C,where ν = (νa)a∈A

for ℓ = 1, 2, . . . , T do
Decision-maker chooses Aℓ = a according to some policy πt

Nature samples (Ca,ℓ, Ra,ℓ,Xa,ℓ) ∼ νa
if Ca,ℓ = 1 then

Decision-maker observes Ra,ℓ

else
Decision-maker receives no feedback

end if
end for

Regret. The pseudo-regret of a decision-maker following a policy π in a MAB with

missing rewards ν ∈ C is

RegretT (π; ν) =
T∑
t=1

(max
a∈A

θa − Eν [RAt,t]) = Tθ −
T∑
t=1

θAt ,

which depends on ν via the average rewards and it is a random quantity because

the {At}t∈[T ] are random. Note that the latter is true even if the policies considered

are deterministic. The reason is that At depends on the history, which is random.

Furthermore, the regret depends on RAt,t independently of whether the rewards have

been observed. In what follows, I omit the dependence of the regret on ν and simply

write RegretT (π).

Goal. The decision-maker’s goal is to find a policy π with good worst-case regret

properties. Formally, the decision-maker seeks to find a policy π whose worst-case

regret RegretT (π; C) := supν∈C RegretT (π; ν) has the nearly optimal rate Õ(
√
T ). In what

follows next, I will not directly optimize the worst case regret over the space of policy Π

(see Adusumilli (2024) for an example of such an approach in a standard MAB). Rather,

I first derive a lower bound for the minimax regret

Regret⋆T (C) := inf
π∈Π

RegretT (π; C).

Then, I derive an upper bound for the worst-case regret RegretT (π̃; C) of some specific

policy π̃ and, finally, I check that the rates of the two bounds coincide. In what follows,

I focus on the popular UCB algorithm (Auer, Cesa-Bianchi and Fischer, 2002) and a
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novel, doubly-robust modification of it as the algorithms used by the decision-maker to

form her policy.

2.1 Algorithms

The UCB algorithm selects the action to be played by solving an exploitation-exploration

trade-off. Indeed, the algorithm desires to explore new actions, but, since playing a

sub-optimal action induces regret, it also wants to exploit what is already known about

the environment. On the one hand, too little exploration might make a sub-optimal

alternative look better than the optimal one because of random fluctuations. On the

other hand, too much exploration prevents the algorithm from playing the optimal

alternative often enough, which also results in a larger regret.

Let θ̂a(t) be an estimator for θa after t− 1 rounds and denote with ba,t(δ) a bonus term

chosen so that θa ∈ [θ̂a(t)− ba,t(δ), θ̂a(t)+ ba,t(δ)]with probability at least 1− δ. The UCB

algorithm selects the action a⋆ at round t that has the highest optimistic mean reward

estimate, i.e.

a⋆ = argmax
a∈A

θ̂a(t) + ba,t(δ).

As such, an action a ∈ A can be chosen for two different reasons: because ba,t(δ) is large,

implying that the estimate θ̂a(t) is noisy (explorative choice); or because θ̂a(t) is large

(exploitative choice). Since the bonus term ba,t(δ) is constructed to shrink quickly each

time alternative a is selected, exploration becomes less frequent over time. When ba,t(δ)

is sufficiently small, the estimated value θ̂a(t) closely approximates the true parameter θa,

assuming that θ̂a(t) is a “good” estimator for θa. Consequently, UCB naturally balances

between exploration and exploitation.

Before describing in great detail the algorithms, let

Pa(t) :=
t−1∑
ℓ=1

1[Aℓ = a], and Na(t) :=
t−1∑
ℓ=1

1[Aℓ = a]Ca,ℓ

be the number of times an arm a ∈ A has been pulled and the number of times the

reward Ra has been observed at the beginning of round t ∈ [T ], respectively.
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2.1.1 Classic UCB Algorithm

The (regularized) estimate for θa, a ∈ A at the beginning of round t ∈ [T ] is

R̂UCB
a (t) =

1

Na(t) + λ

t−1∑
ℓ=1

1[Aℓ = a]Ca,ℓRa,ℓ, (1)

where λ > 0 is a regularization parameter that prevents the estimator from being ill-

defined whenever, after initialization, it occurs that Na(t) = 0 for some a ∈ A and t ≥ 1

(see also Remark 1). The optimistic mean reward estimate of action a ∈ A after t ∈ [T ]

rounds is

R̃UCB
a (t, δ) = R̂UCB

a (t) + bUCBa,t (δ),

where the “bonus” term bUCBa,t (δ) is chosen to make sure that the optimistic mean reward

estimate R̃UCB
a (t, δ) upper bounds the true mean reward θa with high probability. In this

specific case, I define

bUCBa,t (δ) :=
σ̄

q
λ

√
2 ln(2AT/δ)

Pa(t) + λ
+

λK

Na(t) + λ
,

where K is some constant larger than θ, q
λ
:= infa,t

Na(t)+λ
Pa(t)+λ

, and δ ∈ (0, 1). Intuitively,

the first term in bUCBa,t (δ) governs the probability with which the optimistic estimate

overestimates the mean reward, whereas the second term takes into account the bias

induced by the regularization term λ > 0. Under reward-independent missingness

(Assumption 1 below), Lemma SA-6 in the supplemental appendix formally justifies

the particular choice of bUCBa,t (δ) described above by showing that

∀ a ∈ A, t ∈ [T ], θa ∈
[
R̂UCB

a (t)− bUCBa,t (δ), R̂UCB
a (t) + bUCBa,t (δ)

]
holds with probability at least 1− δ.

The way the UCB algorithm works is straightforward: at round t ∈ [T ], it selects the arm

a that has the highest optimistic mean reward estimate. Algorithm 1 below summarizes

all the steps needed by the classic UCB algorithm.
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Procedure 1 Update Estimators for UCB
for a ∈ [A] do

Na(t+ 1)← Na(t) + 1[At = a]Ca,t

Pa(t+ 1)← Pa(t) + 1[At = a]

R̂a(t+ 1)← 1
Na(t+1)+λ

∑t
ℓ=1 1[Aℓ = a]Ca,ℓRa,ℓ

bUCBa,t+1(δ)← σ̄
q
λ

√
2 ln(2AT/δ)
Pa(t+1)+λ

+ λK
Na(t+1)+λ

R̃a(t+ 1, δ)← R̂a(t+ 1) + bUCBa,t+1(δ)
end for

Algorithm 1 UCB algorithm
Input: λ > 0, q

λ
, σ̄, T,A, δ,K

Initialization: pull each arm once, get R̂UCB
a (0), set Pa(0) = 1, Na(0) = Ca,0,∀ a ∈ A

1: for t = 1, 2, . . . , T do
2: pull arm at = argmaxa∈A R̃UCB

a (t, δ) and set πUCB
t = at

3: call Update Estimators for UCB (Procedure 1)
4: end for

Output: πUCB = {πUCB
t }t∈[T ]

Remark 1. I introduce the regularization parameter λ > 0 to take care of those cases

in which Na(0) = 0, where t = 0 denotes the initialization period. In the absence of

missing data, i.e., when Na(t) = Pa(t) almost surely, it is common practice to pull each

arm once as initialization. If the action set is finite, the initialization just shifts up the

regret of a factor not larger than AK. In the context studied here, pulling each arm once

grants that Pa(0) = 1 for all a ∈ A, but does not guarantee that Na(0) = 1 for all a ∈ A.

Rather, the event {Na(0) = 1,∀ a ∈ A} realizes with probability
∏

a∈A qa ≤ 1, hence the

need for regularization. ♣

2.1.2 Doubly-Robust UCB Algorithm

Let the true conditional mean reward and probability of not being missing for arm

a ∈ A as

θa(Xa) := Eν [Ra | Xa], qa(Xa) = Eν [Ca | Xa] ∈ [q, 1]

almost surely, and denote with θ̂a(·) and q̂a(·) their estimated counterparts. Through-

out, I use interchangeably the terms “probability of rewards not being missing” and
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“probability of missingness”. The doubly-robust estimator for mean rewards is defined

as

R̂DR
a (t) :=

1

Pa(t)

t−1∑
ℓ=1

1[Aℓ = a]

(
Ca,ℓ(Ra,ℓ − θ̂a(Xa,ℓ))

q̂a(Xa,ℓ)
+ θ̂a(Xa,ℓ)

)
.

The optimistic mean reward estimator for DR-UCB is defined as

R̃DR
a (t, δ) = R̂DR

a (t) + bDR
a,t (δ), bDR

a,t (δ) = KODR

√
2 ln(2AT/δ)

Pa(t)
+ bresa,t(δ), (2)

whereKODR := σ̄
q
+ σ̄ and bresa,t(δ) is defined precisely in Section SA1.3.3 of the supplemen-

tal appendix. Under a reward-dependent process that causes missing data (Assumption

2 below), Lemma SA-12 in the supplemental appendix thoroughly justifies the choice

of bDR
a,t (δ) as a bonus term and proves that

∀ a ∈ A, t ∈ [T ], θa ∈
[
R̂DR

a (t)− bDR
a,t (δ), R̂

DR
a (t) + bDR

a,t (δ)
]

holds with probability at least 1− δ.

Finally, Algorithm 2 describes in greater detail how the DR-UCB algorithm works.

Procedure 2 Update Estimators for DR-UCB
for a ∈ [A] do

Na(t+ 1)← Na(t) + 1[At = a]Ca,ℓ

Pa(t+ 1)← Pa(t) + 1[At = a]
Update q̂a and θ̂a if required

R̂DR
a (t+ 1) := 1

Pa(t+1)

∑t
ℓ=1 1[Aℓ = a]

(
Ca,ℓ(Ra,ℓ−θ̂a(Xa,ℓ))

q̂a(Xa,ℓ)
+ θ̂a(Xa,ℓ)

)
R̃DR

a (t+ 1, δ)← R̂DR
a (t+ 1) + bDR

a,t (δ)
end for

Algorithm 2 DR-UCB algorithm
Input: λ > 0, T,A, δ, {q̂a(·), θ̂a(·)}a∈A
Initialization: pull each arm once, get R̂DR

a (0) and set Pa(0) = 1, Na(0) = Ca,0,∀ a ∈
A

Nuisances: get estimates {q̂a(Xa,0), θ̂a(Xa,0)}a∈A} according to Assumption 3(iii)
1: for t = 1, 2, . . . , T do
2: pull arm at = argmaxa∈A R̃DR

a (t, δ) and set πDR
t = at

3: call Update Estimators for DR-UCB (Procedure 2)
4: end for

Output: πDR = {πDR
t }t∈[T ]
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3 Multi-armed Bandits with Missing Data

In Section 3.1, I begin by analyzing the performance of the UCB algorithm under the

assumption that the process that causes missing data does not depend on rewards

(Assumption 1). In Section 3.2, I then show that, when the previous assumption is

relaxed to allow for reward-dependent missingness (Assumption 2), the UCB algorithm

can suffer from linear regret, whereas DR-UCB achieves sub-linear worst-case regret.

In Section 3.3, I present a lower bound for the minimax regret. Finally, in Section 3.4, I

conclude by giving some practical advice on how to implement DR-UCB.

3.1 Reward-independent Missingness

I begin by considering the scenario where rewards are missing at random, as formalized

in Assumption 1. Additionally, rewards are assumed to be sub-Gaussian, a common con-

dition that constrains their tail behavior and enables the use of standard concentration

inequalities; see Vershynin (2018) and Wainwright (2019) for an introduction.

Assumption 1. For each action a ∈ A, Ca ⊥⊥ Ra.

Under Assumption 1, the class of bandits of interest is restricted to

C1 :=
{
(νa)a∈A : ν [R]

a ∈ SG(σa), ν [C]
a = Be(qa), qa ∈ (0, 1], νa = ν [R]

a · ν [C]
a

}
⊂ C.

The paper’s first main result establishes that the UCB algorithm achieves a near-optimal

worst-case regret rate over the class of bandits C1. The proof of such a result follows

using standard arguments. Namely, I consider a “good” event and show that it occurs

with high probability in the setting considered throughout. In this spirit, define such

an event as

G(δ1, δ2) = FUCB(δ1) ∩ FMIS(δ2),

for some δ1, δ2 ∈ (0, 1), where

FUCB(δ) := {∃ a ∈ A, t ∈ [T ],
∣∣∣R̂UCB

a (t)− θa

∣∣∣ ≥ bUCBa,t (δ)},

12



FMIS(δ) :={∃ a ∈ A, t ∈ [T ] : Na(t) ≤ (1− δ)qaPa(t), Pa(t) ≥ T a},

where T a := 1 + 24 ln(T )
qa

. Under the good event, which realizes with probability at least

1−δ1−δ2, it holds that: (i) for each action, the optimistic reward estimator always covers

the true mean; (ii) after a minimum amount of pulls T a, the missing data mechanism is

not too extreme in terms of percentage deviation from its mean.

In the supplemental appendix, Lemma SA-6 and Lemma SA-7 show that FUCB(δ1) and

FMIS(δ2) occur with arbitrarily small probability. Then, under the good event G(δ1, δ2),

it is possible to bound the worst case regret of UCB uniformly over bandits in C1 and

horizons T ∈ N. This result is presented formally in the next theorem and proven in the

supplemental appendix.

Theorem 1. Let Assumption 1 hold, λ = o(T 1/2), δ1 ∈ (0, 1), δ2 =
√

1+κ
12

, and κ > 0. Then,

for any T ∈ N and bandit ν ∈ C1

RegretT (π
UCB) ≲

4σ̄

q
λ

√
2AT ln(2AT/δ1) ,

with probability at least 1− δ1 −O(T−κ).

3.2 Reward-dependent Missingness

The previous section showed that, under the assumption that the process that causes

missing data does not depend on rewards, the UCB algorithm has nearly-optimal regret.

However, this independence assumption is hard to defend in practical applications.

Borrowing from the program evaluation literature, I relax Assumption 1 and, instead,

rely on a conditional ignorability assumption (CIA), which states that independence holds

only conditional on the vector of covariates Xa (Rosenbaum and Rubin, 1983).1 Put

differently, the CIA imposes that knowledge of Xa is sufficient to break the dependence

between rewards and the missing data mechanism in each arm.

The CIA can be expressed in two ways: by imposing some structure on the conditional
1This is a standard assumption in the causal inference literature. I refer the interested reader to

Imbens (2004) and Chapter 21 in Wooldridge (2010) for thorough discussions of the plausibility of such
an assumption in various contexts.
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expectation of Ca (so-called design-based approach); by imposing some structure on

the conditional expectation of Ra (so-called model-based approach). Depending on

the specific application, either version of the CIA might be more appealing. The next

assumption formalizes this idea.

Assumption 2 (Model- and Design-based Ignorability). For each a ∈ A, either

Eν [Ra | Xa, Ca] = Eν [Ra | Xa] =: θa(Xa) a.s. (MB)

or

Eν [Ca | Xa, Ra] = Eν [Ca | Xa] =: qa(Xa) a.s. (DB)

holds. Moreover, Ra | Xa,∼ sG(σa) and qa(x) ∈ [q, 1], for some constants 0 ≤ Kθ <∞ and

q ∈ (0, 1].

On top of the CIA, Assumption 2 requires sub-Gaussianity of rewards only conditional

on Xa and has two other mild requirements: (i) the conditional expectation of each

Ra is uniformly bounded over X ; (ii) the probability of observing rewards is non-zero

(qa > 0). Hence, the class of bandits considered throughout is

C2 :=
{
ν = (νa)a∈A : ν [C]

a = Be(qa), qa ∈ (0, 1], and Assumption 2 holds
}
⊂ C.

In this framework, it is well-known that the mean-reward estimator defined in (1) is

not consistent anymore for θa (Horvitz and Thompson, 1952). Even more worryingly,

the estimators R̂UCB
a (t), a ∈ Amight have probability limits θ̃a such that

argmax
a∈A

θ̃a ̸= argmax
a∈A

θa,

so that even after a large number of rounds T , the UCB algorithm will not learn the best

arm. Section SA2.2.1 of the supplemental appendix shows an example of a bandit in C2

such that this realizes.

Assumption 2 ensures that θa can be identified from the data had the nuisance functions

{θa(·), qa(·), a ∈ A} been known. However, in practice, these nuisances need to be

estimated, and extra care is required in doing so. Before elucidating how nuisance

estimation should be conducted, define the following ℓ2-estimation errors for each
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a ∈ A

Errt(θ̂a) :=

√√√√ 1

Pa(t)

t−1∑
ℓ=1

1[Aℓ = a](θ̂a(Xa,ℓ)− θ̃a(Xa,ℓ))2 ,

and

Errt(q̂a) :=

√√√√ 1

Pa(t)

t−1∑
ℓ=1

1[Aℓ = a](q̂a(Xa,ℓ)− q̃a(Xa,ℓ))2

for some known q̃a(x) and θ̃a(x).

Assumption 3 precisely states all the requirements the nuisance estimators have to satisfy;

see also Section 3.4 for two examples of practical procedures that satisfy Assumption 3.

Assumption 3 (Nuisance Estimation). For each a ∈ A, the following are true:

(a) (double robustness) either q̃a(x) = qa(x) or θ̃a(x) = θa(x);

(b) (truncation) ∀x ∈ X , q̂a(x) ∈ [q, 1], q ∈ (0, 1];

(c) (independence) (q̂a(Xa), θ̂a(Xa)) ⊥⊥ (Ra, Ca) | Xa;

(d) (ℓ2-error rate) there exist rates α > 1/2, αq > 0, and αθ > 0 such that

Errt(q̂a) ≲
1

Pa(t)αq
, Errt(θ̂a) ≲

1

Pa(t)αθ
, Errt(q̂a)Errt(θ̂a) ≲

1

Pa(t)α

with probability 1− δc, δc ∈ (0, 1).

First, Assumption 3(a) requires one between the true conditional probability of missing-

ness, qa(·), and the true conditional expectation of rewards, θa(·), to be the probability

limit of one of the nuisance estimators, θ̂a(·) and q̂a(·). In other words, it suffices to

have well-specified only one of the two conditional expectations. Second, Assumption

3(b) bounds the estimated probability of (not) being missing away from 0, a typical

regularity condition in such problems. Third, to avoid over-fitting bias, Assumption

3(c) asks the nuisance functions to be estimated in an independent (conditional on

Xa) sample. Fourth, 3(d) controls the estimation error of the nuisance estimators in

two ways: (i) the estimation error of each nuisance need to be shrinking in Pa(t); (ii)
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the product of the estimation errors must decay faster than 1/
√
Pa(t) . These condi-

tions make the sampling error dominate the estimation error induced by the fact that

{(θa(·), qa(·)), a ∈ A} are estimated.

Assumption 3 is fundamental to make the term bresa,t(δ) of higher order in the bonus

term bDR
a,t (δ) defined in (2). Formally, under such an assumption, it follows that bresa,t(δ) =

oP(1/
√

Pa(t) ) and the next lemma follows.

Lemma 1. Let Assumptions 2 and 3 hold, δ ∈ (0, 1), a ∈ A, and t ∈ [T ]. Then,∣∣∣R̂DR
a (t)− θa

∣∣∣ ≥ bDR
a,t (δAT )

with probability at most δ.

The above result shows that the bonus term for the DR-UCB algorithm has been chosen

appropriately in the sense that it controls the probability with which R̂DR
a (t) deviates

from θa. This result is of independent interest as it is the first one that provides high-

probability bounds for a doubly-robust estimator under mild assumptions; see Lemma

SA-12 in the supplemental appendix for a formal statement, a proof of the result, and

some heuristics on the logic behind the strategy used in the proof.

To provide a bound on the worst-case regret over the class C2, a similar strategy to the

one used in Section 3.1 is adopted. Define the failure event

FDR(δ) :=

{
∃ a ∈ A, t ∈ [T ],

∣∣∣R̂DR
a (t)− θa

∣∣∣ ≥ bDR
a,t (δ)

}
.

When FDR(δ) occurs the optimistic doubly-robust reward estimator R̃DR
a (t) = R̂DR

a (t) +

bDR
a,t (t) does not cover the true mean reward θa. Using Lemma 1, it is immediate to see

that P[FDR(δ)] ≤ δ for some δ ∈ (0, 1). The next theorem shows that the regret of the

DR-UCB algorithm is nearly optimal (up to logarithmic factors) and provides an upper

bound that holds with high probability uniformly over the horizon T and the class of

bandits C2.

Theorem 2. Let Assumptions 2 and 3 hold with δ ∈ (0, 1) and δc ∈ (0, 1). Then, for any
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horizon T ∈ N and bandit ν ∈ C2

RegretT (π
DR) ≲

4σ̄

q

√
AT ln(2AT/δ)

with probability 1− δ − δc.

Comparing Theorem 2 with Theorem 1, it is possible to see that the leading order

terms of the worst case regret bound are identical. Indeed, Assumption 3(d) is crucial

in granting that the uncertainty due to the estimation of the nuisance functions is

dominated by the one due to sampling error; see the supplemental appendix for a

formal proof and additional heuristics to foster intuition for this result.

3.3 Lower Bound

In this section, I show that the minimax regret

Regret⋆T (Cj) := inf
π∈Π

sup
ν∈Cj

RegretT (π; ν), j ∈ {1, 2}

is lower bounded by a constant times a factor of
√
T .

The logic of the proof is similar to that behind classic lower bound results obtained via

Le Cam’s two-point lemma. In particular, a generic policy π̃ ∈ Π is considered and its

regret on two particular instances ν, ν ′ ∈ C is lower-bounded, where C is some class of

bandits. Then, it follows that

sup
ν̃∈C

RegretT (π̃; ν̃) ≥ max{RegretT (π̃, ν),RegretT (π̃, ν ′)} ≥ f(T ),

for some function f(·). Because the policy π̃ was generic, then the bound above holds

for any policy in Π, hence

Regret⋆T (C) = inf
π∈Π

sup
ν∈C

RegretT (π; ν) ≥ f(T ).

In particular, to get a lower bound for the minimax regret over the classes of bandits

C1 and C2, I derive a lower bound for the minimax regret for the classes of Gaussian

bandits

Cgau1 := {(νa)a∈A : ν [R]
a = N(θa, 1), ν

[C]
a = Be(qa), qa ∈ (0, 1]} ⊂ C1
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and

Cgau2 :=
{
ν = (νa)a∈A : ν [R|X]

a =N(θa(X), 1), ν [C]
a = Be(qa), qa ∈ (0, 1],

and Assumption 2 holds
}
⊂ C2.

Because the “sup” of the minimax is taken over a smaller subset, the minimax bound

for Gaussian bandits extends immediately to the classes of sub-Gaussian bandits C1 and

C2. A textbook example can be found in Lattimore and Szepesvári (2020), Chapter 15,

and the proof of Theorem 3 is almost identical to that of Theorem 15.2 in LS and, indeed,

the bound is identical.

Theorem 3. Let T ∈ N, T ≥ A− 1 and consider the classes of bandits C1 and C2. Then,

Regret⋆T (Cj) = inf
π∈Π

sup
ν∈Cj

RegretT (π; ν) ≥
√
T (A− 1)

16
√
e

.

3.4 Nuisance Estimation

The near-optimality of DR-UCB hinges on having nuisance estimators θ̂a(·) and q̂a(·) that

satisfy Assumption 3. In what follows, I give two examples of classes of estimators that

satisfy the conditions in Assumption 3 and give practical advice for implementation.

First, I start by highlighting a classical trade-off between Assumptions 3(a) and 3(d):

relying on flexible nonparametric estimators makes Assumption 3(a) more likely to be

satisfied than when parametric estimators are used; however, nonparametric estima-

tors typically have slower convergence rates than their parametric competitors, thus

making 3(d) harder to be satisfied. As an instance, machine learning methods –such as

lasso, ridge, random forests, neural networks– can be used to estimate the nuisances

{(θa(·), qa(·)), a ∈ A}, as long as their convergence rate (or ℓ2 error bounds) decay at

a faster rate than 1/
√

Pa(T ) . For some real-life applications and discussions of the

feasibility of these methods, see Ahrens, Chernozhukov, Hansen, Kozbur, Schaffer and

Wiemann (2025).

I now turn to Assumption 3(c), but before discussing it, it is necessary to introduce
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some notation. Define the main estimation dataset as

DT
main :=

{
Zℓ, ℓ ∈ [T ]

}
, Zj := (RAj ,j, CAj ,j,X

⊤
Aj ,j

)⊤.

Appropriate nuisance estimators θ̂a and q̂a that satisfy Assumption 3(c) can be con-

structed in (at least) two ways:

M1 Different batch. Use samples from a dataset DM1 such that

DM1 :=
{
Zℓ, ℓ ̸∈ [T ]

}
.

For example, suppose two similar decision-makers are interacting with two copies

of the same bandit with missing data. Let the datasets generated by their inter-

actions with the MAB be denoted with DTj

main,j, j = 1, 2. Then, θ̂a and q̂a can be

estimated for the first decision-maker using DT2
main,2 and for the second decision-

maker using DT1
main,1.

M2 Leave-one-out. When updating R̂DR
a (t) at the end of round t − 1, one can use

estimators θ̂a and q̂a that use the dataset Dt−2
main, i.e.,

Dt−2
main := {Zℓ, ℓ = 1, . . . , t− 2} .

In words, θ̂a and q̂a are constructed online using the “leave-one-out” principle,

where the sample left out corresponds to the last observed sample of data.

As a final remark, I stress that in virtue of approaches such as M2, I should be writing

θ̂
(ℓ)
a and q̂

(ℓ)
a for each round ℓ ∈ [T ]. I avoid doing so to save notation, but it is maintained

that the nuisance estimators are allowed to be updated with the rounds.

Third, the estimated conditional probability of missingness needs to be bounded be-

tween q and 1 to avoid dealingwith “small denominators”, i.e., when some of the q̂a’s are

close to 0. Various alternatives exist in the literature: Crump, Hotz, Imbens and Mitnik

(2009) proposes a data-driven trimming procedure that minimizes the variance of the

estimator, and it is optimal under homoskedasticity (see Khan and Ugander (2025)

for a recent extension to the heteroskedastic case); (Ma and Wang, 2020) warn against

ad hoc trimming and propose a data-driven procedure that minimizes the asymptotic
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mean squared error of the resulting estimator. I stress that, while these procedures

have been extensively validated via simulations, they rely on asymptotic guarantees

and should therefore be applied with caution in finite-sample settings such as the one

analyzed here.

4 Simulation Evidence

In this section, I present simulation results for the performance of the algorithms

discussed. In the simulation, for each a ∈ A, I model Xa,j
iid∼ N(0, 1), j = 1, . . . , d, ua,j

iid∼

N(0, σ2
j ), j ∈ {C,R}, and define

Ca = 1

 d∑
ℓ=1

Xa,ℓβℓ + ua,C > τ(qa)

 , Ra = θa +
d∑

ℓ=1

Xa,ℓβℓ + ua,R,

where β := (β1, . . . , βd)
⊤ ∈ R++ and τ(qa) : P[

∑d
ℓ=1 Xa,ℓβℓ + ua,C > τ(qa)] = qa. Note

that

Ra ∼ N(θ, d+ σ2
R), Ca ∼ Be(qa), Ca ⊥⊥ Ra | Xa.

I then setA = 2, T = 5000, d = 1, and consider three different scenarios: nomissing data;

reward-independent missingness; and reward-dependent missingness. Table 1 reports

the most important characteristics of these scenarios, which are the true mean rewards

(θ1, θ2), the probability limit of the mean reward estimator that uses only observed

rewards (θ̃1, θ̃2), and the probability of missingness. More details about the simulation,

estimation of nuisance functions, and parametrization can be found in the supplemental

appendix Section SA3.

Table 1: Details of the three simulated scenarios.

MAB (θ1, θ2) (θ̃1, θ̃2) (q1, q2)

Standard (0.5, 1) (0.5, 1) (1, 1)
w/ independent missingness (Section 3.1) (0.5, 1) (0.5, 1) (0.25, 0.9)
w/ dependent missingness (Section 3.2) (0.5, 1) (1.16, 1.08) (0.25, 0.9)

In the first two scenarios, there is no wedge between the probability limits (θ̃1, θ̃2) and
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the true mean reward, suggesting that the UCB algorithm would work fine. This is

exactly what can be deduced from Figure 1 and Figure 2.

The left panel of those figures shows the instance-specific regret of the UCB algorithm,

which exhibits the classical logarithmic shape in the number of rounds. As a benchmark,

the performance ofUCB is comparedwith an oracle version of the algorithm, which does

not rely on the optimistic mean reward estimator R̃UCB
a (t; δ), but rather on a confidence

interval constructed as if the data-generating process was known. The right panel of

Figure 1 and Figure 2 portrays the probability with which each algorithm selects the

optimal arm a⋆ = 2 and shows that it approaches one as the number of rounds grows

large. Notably, there is not much of a difference between scenario 1 and scenario 2. The

only exception is that UCB needs more rounds to discover the optimal arm, consistent

with the fact that rewards are not observed at all rounds.

Fig. 1: Regret and optimal arm selection - No missingness
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Notes: the left panel shows the cumulative regret averaged over S = 500 draws of a bandit parametrized
according to the specifics of scenario 1. A similar exercise has been conducted in the right panel to plot
the probability with which each policy selects the optimal arm. The algorithm behind the policy πUCB is
described in Algorithm 1, whereas the one behind πUCB

⋆ is described in Section SA3.2 of the supplemental
appendix.

Sensible differences emerge under the last scenario. Indeed, the parametrization under

the third scenario has been chosen so that

θ1 < θ2 but θ̃1 > θ̃2,

21



Fig. 2: Regret and optimal arm selection - reward-independent missingness
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Notes: the left panel shows the cumulative regret averaged over S = 500 draws of a bandit parametrized
according to the specifics of scenario 2. A similar exercise has been conducted in the right panel to plot
the probability with which each policy selects the optimal arm. The algorithm behind the policy πUCB is
described in Algorithm 1, whereas the one behind πUCB

⋆ is described in Section SA3.2 of the supplemental
appendix.

which implies that UCB will select with high probability a = 1, which is not the best

action. On the contrary, DR-UCB should still be able to pick the best arm a⋆ = 2. Figure

3 demonstrates that this intuition is indeed correct, together with the theoretical results

presented in Section 3.

Most importantly, the one under scenario 3 is an instance of a bandit in C2 that makes

the regret of πUCB grow linearly with the number of rounds. Indeed, the vanilla UCB

algorithm selects the correct action only a quarter of the time after 5,000 rounds. If the

number of roundswere to increase, this probabilitywould slowly approach 0. Intuitively,

it takes time for the UCB algorithm to stick to the suboptimal arm a⋆ = 1 because the

probability limits θ̃1 and θ̃2 are very close to each other.

On the other hand, theDR-UCB shows logarithmic regret, and its probability of selecting

the optimal armquickly approaches one. Even in Figure 3, I also display the performance

of an oracle algorithm that does not use the bonus term bDR
a,t (δ), but instead leverages

knowledge of the underlying data-generating process.

Finally, Figure 4 illustrates why DR-UCBworks, whereas UCB does not under reward-
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Fig. 3: Regret and optimal arm selection - Reward-dependent missingness
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Notes: the left panel shows the cumulative regret averaged over S = 500 draws of a bandit parametrized
according to the specifics of scenario 3. A similar exercise has been conducted in the right panel to plot
the probability with which each policy selects the optimal arm. The algorithm behind the policy πUCB is
described in Algorithm 1, the one to implement the policy πDR in Algorithm 2, whereas the one behind
πDR
⋆ is described in Section SA3 of the supplemental appendix.

dependent missingness. The graph plots themean value, alongwith the 2.5th and 97.5th

percentiles of the values obtained by three estimators across 1,000 draws of a bandit

parametrized as in scenario 3. The three estimators are: the estimator that uses only

observed rewards, R̂a(t); the doubly-robust estimator, R̂DR
a (t); and an oracle estimator

that always observes rewards, Řa(t).

The right panel showcases the results for action a = 2. Under this arm, the difference

between the true mean reward θ2 = 1 and the probability limit of R̂2(t), θ̃2 = 1.08

is minimal, but still detectable from the graph. As expected, the doubly-robust and

oracle estimators both quickly converge to the true mean reward θ2. The left panel

portrays the differences between the estimators in a neater way. The naı̈ve estimator

R̂1(t) rapidly approaches θ̃1 = 1.16. The other two estimators converge to θ1 = 0.5. The

larger uncertainty of the doubly-robust estimator, when compared to the oracle, comes

from the fact that it estimates the nuisance functions, and because the incidence of

missing data is strong under this arm, q1 = 0.2.

Comparing the two panels also shows that the UCB algorithm flips the true ordering of
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mean rewards. Put differently, UCB picks with increasing probability a = 1, because

θ̃1 > θ̃2. This is nothing more than a standard sample selection problem, where the

selection occurs on dimensions that are (possibly directly) related to the outcomes of

interest.

Fig. 4: Mean reward estimators behavior
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Notes: dotted lines are the average value taken by an estimator across 500 draws of a bandit parametrized
as under scenario 3; shaded areas are bounded between the 2.5th and 97.5th percentiles. Horizontal black
lines indicate the values of the true mean rewards θa.

5 Conclusion

This paper examined a sequential decision-making problem in which feedback may be

missing when the decision-maker interacts with the environment. I showed that stan-

dard methods—most notably the popular UCB algorithm—incur linear minimax regret

across a wide range of such problems. In contrast, the proposed DR-UCB algorithm

matches the optimal minimax regret rate (up to logarithmic factors), as established
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by a new lower bound for this problem class. I also provide practical guidance for

implementing DR-UCB. Extending this framework to more general settings—such as

contextual bandits or models with time-dependent feedback—constitutes a promising

avenue for future work.
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